참고문헌
- Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80: 53-62. https://doi.org/10.1016/S0960-8524(01)00051-7
- Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. 2010. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface 7: 703-726. https://doi.org/10.1098/rsif.2009.0322
- Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, et al. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21: 277-286. https://doi.org/10.1016/j.copbio.2010.03.005
- Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131. https://doi.org/10.1016/j.tibtech.2007.12.002
- Li YG, Xu L, Huang YM, Wang F, Guo C, Liu CZ. 2011. Microalgal biodiesel in China: Opportunities and challenges. Appl. Energy 88: 3432-3437. https://doi.org/10.1016/j.apenergy.2010.12.067
- Chaichalerm S, Pokethitiyook P, Yuan W, Meetam M, Sritong K, Pugkaew W, et al. 2012. Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Appl. Energy 89: 296-302. https://doi.org/10.1016/j.apenergy.2011.07.028
- Sharma YC, Singh V. 2017. Microalgal biodiesel: A possible solution for India's energy security. Renew. Sustain. Energy Rev. 67: 72-78. https://doi.org/10.1016/j.rser.2016.08.031
- Sharma YC, Singh B, Upadhyay SN. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 12: 2355-2373.
- Chung WS, Kim SS, Moon KH, Lim CY, Yun SW. 2017. A conceptual framework for energy security evaluation of power sources in South Korea. Energy 137: 1066-1074. https://doi.org/10.1016/j.energy.2017.03.108
- Hong JW, Jo SW, Yoon HS. 2015. Research and development for algae-based technologies in Korea: a review of algae biofuel production. Photosynth. Res. 123: 297-303. https://doi.org/10.1007/s11120-014-9974-y
- Nichols HW, Bold HC. 2007. Trichosarcina polymorpha Gen. et Sp. Nov. J. Phycol. 1: 34-38.
- Ren HY, Liu BF, Ma C, Zhao L, Ren NQ. 2013. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol. Biofuels 6: 143. https://doi.org/10.1186/1754-6834-6-143
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Prescott DM. 1964. Methods in cell physiology. pp. 159-187. In Kuhl A, Lorenzen H (eds), Handling and culturing of Chlorella, 1st Ed. Academic Press, New York and London.
- Rippka R, Herdman H. 1992. Pasteur Culture Collection of Cyanobacteria. pp. 103. Catalogue & Taxonomic Handbook. Institut Pasteur, Paris.
- Vonshak A, Richmond A. 1986. Handbook of microalgal mass culture. pp. 117-145. CRC Press, Boca Raton Florida.
- Zhu J, Rong J, Zong B. 2013. Factors in mass cultivation of microalgae for biodiesel. Chinese J. Catal. 34: 80-100. https://doi.org/10.1016/S1872-2067(11)60497-X
- Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010
- Butterwick C, Heaney SI, Talling JF. 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw. Biol. 50: 291-300.
- Pan YY, Wang ST, Chuang LT, Chang YW, Chen CNN. 2011. Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresour. Technol. 102: 10510-10517. https://doi.org/10.1016/j.biortech.2011.08.091
- Chiu PH, Soong K, Chen CNN. 2016. Cultivation of two thermotolerant microalgae under tropical conditions: Influences of carbon sources and light duration on biomass and lutein productivity in four seasons. Bioresour. Technol. 212: 190-198. https://doi.org/10.1016/j.biortech.2016.04.045
- Rios LF, Martinez A, Klein BC, Wolf Maciel MR, Maciel Filho R. 2018. Comparison of growth and lipid accumulation at three different growth regimes with Desmodesmus sp. Waste and Biomass Valorization 9: 421-427. https://doi.org/10.1007/s12649-016-9811-y
- Ji F, Hao R, Liu Y, Li G, Zhou Y, Dong R. 2013. Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production. Bioresour. Technol. 148: 249-254. https://doi.org/10.1016/j.biortech.2013.08.110
- Ho SH, Chang JS, Lai YY, Chen CNN. 2014. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresour. Technol. 156: 108-116. https://doi.org/10.1016/j.biortech.2014.01.017
- Rios LF, Klein BC, Luz LF, Maciel Filho R, Wolf Maciel MR. 2015. Nitrogen Starvation for Lipid Accumulation in the Microalga Species Desmodesmus sp. Appl. Biochem. Biotechnol. 175: 469-476. https://doi.org/10.1007/s12010-014-1283-6
- Courchesne NMD, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141: 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
- Hempel N, Petrick I, Behrendt F. 2012. Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J. Appl. Phycol. 24: 1407-1418. https://doi.org/10.1007/s10811-012-9795-3
- Wu H, Miao X. 2014. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour. Technol. 170: 421-427. https://doi.org/10.1016/j.biortech.2014.08.017
피인용 문헌
- 신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구 vol.48, pp.3, 2018, https://doi.org/10.4014/mbl.1912.12020