DOI QR코드

DOI QR Code

Generation of a Human Monoclonal Antibody to Cross-Reactive Material 197 (CRM197) and Development of a Sandwich ELISA for CRM197 Conjugate Vaccines

  • Kim, Dain (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Yoon, Hyeseon (Eubiologics Co., Ltd.) ;
  • Kim, Sangkyu (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Wi, Jimin (Scripps Korea Antibody Institute) ;
  • Chae, Heesu (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Jo, Gyunghee (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Yoon, Jun-Yeol (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Kim, Heeyoun (Eubiologics Co., Ltd.) ;
  • Lee, Chankyu (Eubiologics Co., Ltd.) ;
  • Kim, Se-Ho (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Hong, Hyo Jeong (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
  • Received : 2018.10.04
  • Accepted : 2018.10.18
  • Published : 2018.12.28

Abstract

Cross-reactive material 197 ($CRM_{197}$) is a non-toxic mutant of diphtheria toxin containing a single amino acid substitution of glycine 52 with glutamic acid. $CRM_{197}$ has been used as a carrier protein for poorly immunogenic polysaccharide antigens to improve immune responses. In this study, to develop a sandwich ELISA that can detect $CRM_{197}$ and $CRM_{197}$ conjugate vaccines, we generated a human anti-$CRM_{197}$ monoclonal antibody (mAb) 3F9 using a phage-displayed human synthetic Fab library and produced mouse anti-$CRM_{197}$ polyclonal antibody. The affinity ($K_D$) of 3F9 for $CRM_{197}$ was 3.55 nM, based on Bio-Layer interferometry, and it bound specifically to the B fragment of $CRM_{197}$. The sandwich ELISA was carried out using 3F9 as a capture antibody and the mouse polyclonal antibody as a detection antibody. The detection limit of the sandwich ELISA was <1 ng/ml $CRM_{197}$. In addition, the 3F9 antibody bound to the $CRM_{197}$-polysaccharide conjugates tested in a dose-dependent manner. This ELISA system will be useful for the quantification and characterization of $CRM_{197}$ and $CRM_{197}$ conjugate vaccines. To our knowledge, this study is the first to generate a human monoclonal antibody against $CRM_{197}$ and to develop a sandwich ELISA for $CRM_{197}$ conjugate vaccines.

Keywords

References

  1. Galazka AM, Robertson SE. 1995. Diphtheria: changing patterns in the developing world and the industrialized world. Eur. J. Epidemiol. 11: 107-117. https://doi.org/10.1007/BF01719955
  2. Valiakina TI, Lakhtina OE, Komaleva RL, Simonova MA, Samokhvalova LV, Shoshina NS, et al. 2009. [Production and characteristics of monoclonal antibodies to the diphtheria toxin]. Bioorg. Khim. 35: 618-628.
  3. Collier RJ. 1975. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39: 54-85.
  4. Porro M, Saletti M, Nencioni L, Tagliaferri L, Marsili I. 1980. Immunogenic correlation between cross-reacting material (CRM197) produced by a mutant of Corynebacterium diphtheriae and diphtheria toxoid. J. Infect. Dis. 142: 716-724. https://doi.org/10.1093/infdis/142.5.716
  5. A M Pappenheimer J. 1977. Diphtheria Toxin. Annu. Rev. Biochem. 46: 69-94. https://doi.org/10.1146/annurev.bi.46.070177.000441
  6. Bennett MJ, Eisenberg D. 1994. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci. Protein Sci. 3: 1464-1475. https://doi.org/10.1002/pro.5560030912
  7. Giannini G, Rappuoli R, Ratti G. 1984. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 12: 4063-4069. https://doi.org/10.1093/nar/12.10.4063
  8. Bigio M, Rossi R, Nucci D, Antoni G, Rappuoli R, Ratti G. 1987. Conformational changes in diphtheria toxoids. Analysis with monoclonal antibodies. FEBS Lett. 218: 271-276. https://doi.org/10.1016/0014-5793(87)81060-8
  9. Leonard EG, Canaday DH, Harding CV, Schreiber JR. 2003. Antigen processing of the heptavalent pneumococcal conjugate vaccine carrier protein CRM(197) differs depending on the serotype of the attached polysaccharide. Infect. Immun. 71: 4186-4189. https://doi.org/10.1128/IAI.71.7.4186-4189.2003
  10. Kelly DF, Snape MD, Clutterbuck EA, Green S, Snowden C, Diggle L, et al. 2006. CRM197-conjugated serogroup C meningococcal capsular polysaccharide, but not the native polysaccharide, induces persistent antigen-specific memory B cells. Blood 108: 2642-2647. https://doi.org/10.1182/blood-2006-01-009282
  11. Usonis V, Bakasenas V, Lockhart S, Baker S, Gruber W, Laudat F. 2008. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine. Vaccine 26: 4602-4607. https://doi.org/10.1016/j.vaccine.2008.05.087
  12. Ada G, Isaacs D. 2003. Carbohydrate-protein conjugate vaccines. Clinical microbiology and infection. Clin. Microbiol. Infect. 9: 79-85. https://doi.org/10.1046/j.1469-0691.2003.00530.x
  13. Pollard AJ, Perrett KP, Beverley PC. 2009. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 9: 213-220. https://doi.org/10.1038/nri2494
  14. Avci FY, Kasper DL. 2010. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immunol. 28: 107-130. https://doi.org/10.1146/annurev-immunol-030409-101159
  15. Avery OT, Goebel WF. 1929. Chemo-Immunological Studies on Conjugated Carbohydrate-Proteins : Ii. Immunological Specificity of Synthetic Sugar-Protein Antigens. J. Exp. Med. 50: 533-550. https://doi.org/10.1084/jem.50.4.533
  16. Avery OT, Goebel WF. 1931. Chemo-Immunological Studies on Conjugated Carbohydrate-Proteins : V. The Immunological Specifity of an Antigen Prepared by Combining the Capsular Polysaccharide of Type Iii Pneumococcus with Foreign Protein. J. Exp. Med. 54: 437-447. https://doi.org/10.1084/jem.54.3.437
  17. Lindberg AA. 1999. Glycoprotein conjugate vaccines. Vaccine 17 Suppl 2: S28-36. https://doi.org/10.1016/S0264-410X(99)00232-7
  18. Principi N, Esposito S. 2018. Development of pneumococcal vaccines over the last 10 years. Exp. Opin. Biol. Ther. 18: 7-17. https://doi.org/10.1080/14712598.2018.1384462
  19. Broker M, Berti F, Schneider J, Vojtek I. 2017. Polysaccharide conjugate vaccine protein carriers as a "neglected valency" -Potential and limitations. Vaccine 35: 3286-3294. https://doi.org/10.1016/j.vaccine.2017.04.078
  20. Dagan R, Poolman J, Siegrist CA. 2010. Glycoconjugate vaccines and immune interference: a review. Vaccine 28: 5513-5523. https://doi.org/10.1016/j.vaccine.2010.06.026
  21. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552-554. https://doi.org/10.1038/348552a0
  22. Boder ET, Wittrup KD. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557. https://doi.org/10.1038/nbt0697-553
  23. Hanes J, Plückthun A. 1997. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. 94: 4937-4942. https://doi.org/10.1073/pnas.94.10.4937
  24. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. 2011. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16: 3675-3700. https://doi.org/10.3390/molecules16053675
  25. Gerdes J, Schwab U, Lemke H, Stein H. 1983. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31: 13-20. https://doi.org/10.1002/ijc.2910310104
  26. Clackson T, Hoogenboom HR, Griffiths AD, Winter G. 1991. Making antibody fragments using phage display libraries. Nature 352: 624-628. https://doi.org/10.1038/352624a0
  27. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433-455. https://doi.org/10.1146/annurev.iy.12.040194.002245
  28. Rappuoli R. 1983. Isolation and characterization of Corynebacterium diphtheriae nontandem double lysogens hyperproducing CRM197. Appl. Environ. Microbiol. 46: 560-564.
  29. Jung SJ, Seo ES, Yun SI, Minh BN, Jin SD, Ryu HJ, et al. 2011. Purification of capsular polysaccharide produced by Streptococcus pneumoniae serotype 19A. J. Microbiol Biotechnol. 21: 734-738. https://doi.org/10.4014/jmb.1010.10043
  30. Jin Z, Chu C, Robbins JB, Schneerson R. 2003. Preparation and characterization of group A meningococcal capsular polysaccharide conjugates and evaluation of their immunogenicity in mice. Infect. Immun. 71: 5115-5120. https://doi.org/10.1128/IAI.71.9.5115-5120.2003
  31. Abdelhameed AS, Morris GA, Almutairi F, Adams GG, Duvivier P, Conrath K, et al. 2016. Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein. Sci. Rep. 6: 35588. https://doi.org/10.1038/srep35588
  32. Kothari S, Kothari N, Kim JA, Lee E, Yoon YK, An SJ, et al. 2013. A novel method for purification of Vi capsular polysaccharide produced by Salmonella enterica subspecies enterica serovar Typhi. Vaccine 31: 4714-4719. https://doi.org/10.1016/j.vaccine.2013.08.037
  33. Micoli F, Rondini S, Pisoni I, Proietti D, Berti F, Costantino P, et al. 2011. Vi-CRM197 as a new conjugate vaccine against Salmonella Typhi. Vaccine 29: 712-720. https://doi.org/10.1016/j.vaccine.2010.11.022
  34. Jo G, Jeong MS, Wi J, Kim DH, Kim S, Kim D, et al. 2018. Generation and characterization of a neutralizing human monoclonal antibody to hepatitis B virus preS1 from phagedisplayed human synthetic Fab library. J. Microbiol. Biotechnol. 28: 1376-1383. https://doi.org/10.4014/jmb.1803.03056
  35. Yoon J-Y, Kim D-H, Kim S, Kim D, Jo G, Shin M-S, et al. 2017. Generation of a monoclonal antibody that has reduced binding activity to VX-inactivated butyrylcholinesterase (BuChE) compared to BuChE by phage display. Biotechnol. Bioprocess Eng. 22: 114-119. https://doi.org/10.1007/s12257-017-0110-7

Cited by

  1. Epitope Mapping of the Diphtheria Toxin and Development of an ELISA-Specific Diagnostic Assay vol.9, pp.4, 2018, https://doi.org/10.3390/vaccines9040313
  2. Cross-reaction between mouse and rat immunoglobulin G: does it matter in sandwich ELISA? vol.19, pp.1, 2018, https://doi.org/10.1186/s43141-021-00222-2