DOI QR코드

DOI QR Code

Ethanol Induces Autophagy Regulated by Mitochondrial ROS in Saccharomyces cerevisiae

  • Jing, Hongjuan (College of Biological Engineering, Henan University of Technology) ;
  • Liu, Huanhuan (College of Biological Engineering, Henan University of Technology) ;
  • Zhang, Lu (College of Biological Engineering, Henan University of Technology) ;
  • Gao, Jie (College of Biological Engineering, Henan University of Technology) ;
  • Song, Haoran (College of Biological Engineering, Henan University of Technology) ;
  • Tan, Xiaorong (College of Biological Engineering, Henan University of Technology)
  • Received : 2018.06.12
  • Accepted : 2018.10.20
  • Published : 2018.12.28

Abstract

Ethanol accumulation inhibited the growth of Saccharomyces cerevisiae during wine fermentation. Autophagy and the release of reactive oxygen species (ROS) were also induced under ethanol stress. However, the relation between autophagy and ethanol stress was still unclear. In this study, expression of the autophagy genes ATG1 and ATG8 and the production of ROS under ethanol treatment in yeast were measured. The results showed that ethanol stress very significantly induced expression of the ATG1 and ATG8 genes and the production of hydrogen peroxide ($H_2O_2$) and superoxide anion (${O_2}^{{\cdot}_-}$). Moreover, the atg1 and atg8 mutants aggregated more $H_2O_2$ and ${O_2}^{{\cdot}_-}$ than the wild-type yeast. In addition, inhibitors of the ROS scavenging enzyme induced expression of the ATG1 and ATG8 genes by increasing the levels of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. In contrast, glutathione (GSH) and N-acetylcystine (NAC) decreased ATG1 and ATG8 expression by reducing $H_2O_2$ and ${O_2}^{{\cdot}_-}$ production. Rapamycin and 3-methyladenine also caused an obvious change in autophagy levels and simultaneously altered the release of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. Finally, inhibitors of the mitochondrial electron transport chain (mtETC) increased the production of $H_2O_2$ and ${O_2}^{{\cdot}_-}$ and also promoted expression levels of the ATG1 and ATG8 genes. In conclusion, ethanol stress induced autophagy which was regulated by $H_2O_2$ and ${O_2}^{{\cdot}_-}$ derived from mtETC, and in turn, the autophagy contributed to the elimination $H_2O_2$ and ${O_2}^{{\cdot}_-}$.

Keywords

References

  1. Kanki T, Furukawa K, Yamashita SI. 2015. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853: 2756-2765. https://doi.org/10.1016/j.bbamcr.2015.01.005
  2. Tsukada M, Ohsumi Y. 1993. Isolation and characterization of autophagy defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333: 169-174. https://doi.org/10.1016/0014-5793(93)80398-E
  3. Fracchiolla D, Sawa-Makarska J, Zens B, Ruiter A, Zaffagnini G, Brezovich A, et al. 2016. Mechanism of cargodirected Atg8 conjugation during selective autophagy. Elife 5 (pii): e18544.
  4. Weiergraber OH, Schwarten M, Strodel B, Willbold D. 2017. Investigating structure and dynamics of Atg8 family proteins. Methods Enzymol. 587: 115-142.
  5. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal D. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151-175. https://doi.org/10.4161/auto.5338
  6. Reggiori F, Klionsky DJ. 2013. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194: 341-361. https://doi.org/10.1534/genetics.112.149013
  7. Wong PM, Puente C, Ganley IG, Jiang X. 2013. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9: 124-137. https://doi.org/10.4161/auto.23323
  8. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496: 181-186. https://doi.org/10.1038/nature12030
  9. Chew LH, Lu S, Liu X, Li FK, Yu AY, Klionsky DJ, et al. 2015. Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. Autophagy 11: 891-905. https://doi.org/10.1080/15548627.2015.1040972
  10. Perpetuini G, Di Gianvito P, Arfelli G, Schirone M, Corsetti A, Tofalo R, et al 2016. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation. Yeast 33: 303-312. https://doi.org/10.1002/yea.3151
  11. Suzuki H, Osawa T, Fujioka Y, Noda NN. 2017. Structural biology of the core autophagy machinery. Curr. Opin. Struct. Biol. 43: 10-17. https://doi.org/10.1016/j.sbi.2016.09.010
  12. Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F, Costa V, Mendes-Faia A, et al. 2010. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 7918-24. https://doi.org/10.1128/AEM.01535-10
  13. Tesniere C, Brice C, Blondin B. 2015. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl. Microbiol. Biotechnol. 99: 7025-7034. https://doi.org/10.1007/s00253-015-6810-z
  14. Piggott N, Cook MA, Tyers M, Measday V. 2011. Genomewild fitness profiles reveal a requirement for autophagy during yeast fermentation. G3 1: 353-367.
  15. Horie T, Kawamata T, Matsunami M, Ohsumi Y. 2017. Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth. J. Biol. Chem. 292: 8533-8543. https://doi.org/10.1074/jbc.M116.762963
  16. Gibson BR, Lawrence SJ, Boulton CA. Box WG, Graham NS, Linforth S, et al 2008. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res. 8: 574-585. https://doi.org/10.1111/j.1567-1364.2008.00371.x
  17. Landolfo S, Politi H, Angelozzi D, Mannazzu I. 2008. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim. Biophys. Acta 1780: 892-898. https://doi.org/10.1016/j.bbagen.2008.03.008
  18. Cheng Y, Du Z, Zhu H, Guo X, He X. 2016. Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci. Rep. 6: 31311. https://doi.org/10.1038/srep31311
  19. Charoenbhakdi S, Dokpiku T, Burphan T, Techo T, Auesukaree C. 2016. Vacuolar $H^+$-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl. Environ. Microbiol. 82: 3121-3130. https://doi.org/10.1128/AEM.00376-16
  20. Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 9: 249-279.
  21. Song C, Mitter SK, Qi X, Beli E, Rao HV, Ding J, et al. 2017. Oxidative stress-mediated $NF{\kappa}B$ phosphorylation upregulates p62/SQSTM1and promotes retinal pigmented epithelial cell survival through increased autophagy. PLos One 12: e0171940. https://doi.org/10.1371/journal.pone.0171940
  22. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of atg4. EMBO J. 26: 1749-1760. https://doi.org/10.1038/sj.emboj.7601623
  23. Xua J, Wua Y, Lu G. Xie S, Ma Z, Chen Z, Shen HM, et al. 2017. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox. Biol. 12: 198-207. https://doi.org/10.1016/j.redox.2017.02.017
  24. Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, Lin WW. 2011. zVAD-induced autophagic cell death requires c-Srcdependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7: 217-28. https://doi.org/10.4161/auto.7.2.14212
  25. Demain AL. 2009. Biosolutions to the energy problem. J. Ind. Microbiol. Biotechnol. 36: 319-332. https://doi.org/10.1007/s10295-008-0521-8
  26. Galeote VA, Blondin B, Dequin S, Sablayrolles, JM. 2001. Stress effects of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol. Lett. 23: 677-681. https://doi.org/10.1023/A:1010396232420
  27. Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC. 2006. Relationship between ethanol tolerance, $H^+$-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol. 110: 34-42. https://doi.org/10.1016/j.ijfoodmicro.2006.02.002
  28. Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, et al. 2014. Genome-wild identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 15: 552. https://doi.org/10.1186/1471-2164-15-552
  29. Almeida B, Sampaio-Marques B, Carvalho J, Silva MT, Leao C, Rodrigues F, et al. 2007. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 7: 404-412. https://doi.org/10.1111/j.1567-1364.2006.00188.x
  30. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M. 2002. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol. Bio. Cell 13: 2598-2606. https://doi.org/10.1091/mbc.e01-12-0161
  31. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  32. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  33. Barja G. 2004. Free radicals and aging. Trends Neurosci. 27: 595-600. https://doi.org/10.1016/j.tins.2004.07.005
  34. Yin D, Chen K. 2005. The essential mechanisms of aging: irreparable damage accumulation of biochemical side-reactions. Exp. Gerontol. 40: 455-465. https://doi.org/10.1016/j.exger.2005.03.012
  35. Gechev TS,Van Breusegem F, Stone JM, Denev I, Laloi C. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bio. Essays. 28: 1091-2101.
  36. Chen HJ, Huang CS, Huang GJ, Chow TJ, Lind YH. 2013. NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, $H_2O_2$ elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J. Plant Physiol. 170: 1471-1483. https://doi.org/10.1016/j.jplph.2013.05.015
  37. Rattanawong K, Kerdsomboon K, Auesukaree C. 2015. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlorin Saccharomy cescerevisiae. Free Radic. Bio. Med. 89: 963-971. https://doi.org/10.1016/j.freeradbiomed.2015.10.421
  38. Magri A, Di Rosa MC, Tomasello MF, Guarino F, Reina S, Messina A, Pinto VD. 2016. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochim. Biophys. Acta 1857: 789-798 https://doi.org/10.1016/j.bbabio.2016.03.003
  39. Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD. 2017. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 13: 1037-1052. https://doi.org/10.1080/15548627.2017.1303021
  40. Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417: 1-13 https://doi.org/10.1042/BJ20081386
  41. Huang S, Aken OV, Schwarzlander M, Belt K, Millar AH. 2016. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171: 1551-1559. https://doi.org/10.1104/pp.16.00166
  42. Li D, Song JZ, Li H, Shan MH, Liang Y, Zhu J, et al. 2015. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett. 89: 269-276.
  43. Cebollero E, Gonzalez R. 2006. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl. Environ. Microb. 72: 4121-4127. https://doi.org/10.1128/AEM.02920-05
  44. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K. 2000. Tolerance mechanism of the ethanoltolerant mutant of sake yeast. J. Biosci. Bioeng. 90: 313-320. https://doi.org/10.1016/S1389-1723(00)80087-0
  45. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, et al. 2009. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21: 2914-2927. https://doi.org/10.1105/tpc.109.068635
  46. Perez-Perez ME, Zaffagnini M, Marchand CH, Crespo JL, Lemaire SD. 2014. The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy 10: 1953-1964 https://doi.org/10.4161/auto.34396
  47. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, et al. 2014. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox. Signal 21: 66-85 https://doi.org/10.1089/ars.2014.5837
  48. Zhu Z, Huang Y, Lv L, Tao Y, Shao M, Zhao C, et al. 2017. Acute ethanol exposure-induced autophagy-mediated cardiac injury v ia a ctivation of the ROS-JNK-Bcl-2 pathway. J. Cell Physiol. 233: 924-935
  49. Kim KY, Park KI, Kim SH, Yu SN, Lee D, Kim YW, et al. 2017. Salinomycin induces reactive oxygen species and apoptosis in aggressive breast cancer cells as mediated with regulation of autophagy. Anticancer Res. 37: 1747-1758. https://doi.org/10.21873/anticanres.11507
  50. Shiroma S, Jayakody LN, Horie K, Okamoto K, Kitagakia H. 2014. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl. Environ. Microbiol. 80: 1002-1012. https://doi.org/10.1128/AEM.03130-13
  51. Basit F, van Oppen LM, Schockel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, et al. 2017. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8: e2716. https://doi.org/10.1038/cddis.2017.133
  52. Bhatelia K, Singh K, Prajapati P, Sripada L, Roy M, Singh R. 2017. MITA modulated autophagy flux promotes cell death in breast cancer cells. Cell Signal 35: 73-83. https://doi.org/10.1016/j.cellsig.2017.03.024

Cited by

  1. Conserved Autophagy Pathway Contributes to Stress Tolerance and Virulence and Differentially Controls Autophagic Flux Upon Nutrient Starvation in Cryptococcus neoformans vol.10, pp.None, 2018, https://doi.org/10.3389/fmicb.2019.02690
  2. Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages vol.30, pp.3, 2020, https://doi.org/10.4014/jmb.1909.09020
  3. Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy vol.104, pp.9, 2018, https://doi.org/10.1007/s00253-020-10518-x
  4. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2004.04073
  5. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics vol.9, pp.2, 2018, https://doi.org/10.3390/microorganisms9020249
  6. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance vol.20, pp.8, 2018, https://doi.org/10.1021/acs.jproteome.1c00139