DOI QR코드

DOI QR Code

Power-efficiency Analysis of the MIMO-VLC System considering Dimming Control

조광제어를 고려한 MIMO-VLC 시스템의 전력 효율 분석

  • 김용원 (대전지역사업평가원) ;
  • 이병진 (충북대학교 전파통신공학과) ;
  • 이병훈 (충북대학교 전파통신공학과) ;
  • 이민정 ((주)에버정보기술) ;
  • 김경석 (충북대학교 전파통신공학과)
  • Received : 2018.08.22
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

White light-emitting diodes (LEDs) are more economical than fluorescent lights, and provide high brightness, a high lifetime expectancy, and greater durability. As LEDs are closely connected with people's daily lives, dimming control of LED is an important component in providing energy savings and improving quality of life. In visible light communications systems using these LEDs, multiple input multiple output (MIMO) technology has attracted a lot of attention, in that it can attain the channel capacity in proportion to the number of antennas. This paper analyzes the power performance of three kinds of modulation in visible light communications (VLC) systems applied space-time block code (STBC) techniques. The modulation schemes are return-to-zero on-off keying (RZ-OOK), variable pulse position modulation (VPPM), and overlapping pulse position modulation (OPPM), and dimming control was applied. The power requirements and power consumption were used as metrics to compare the power efficiency in $2{\times}2$ STBC-VLC environments under the three kinds of modulation. We confirm that dimming control affects the communications performance of each modulation scheme. VPPM showed greater consumption among the three modulations, and OPPM showed energy savings comparable to VPPM.

백색 발광다이오드(LEDs)는 형광등보다 경제적이며 높은 밝기, 수명, 내구성을 제공한다. 이러한 LED는 사람들의 일상생활과 밀접하게 연결되어 있기 때문에 LED의 조광제어는 에너지 절약과 삶의 질 향상에 중요한 요소이다. 이 LED를 사용하는 가시광통신시스템에서는 안테나 수에 비례해 채널 용량을 확보할 수 있다는 점에서 복수의 MIMO(입력 다중 출력) 기술이 많은 관심을 끌었다. 본 논문은 가시광통신(VLC) 시스템에서 적용된 공간-시간 블록 코드(STBC) 기법의 세 가지 변조의 전력 성능을 분석한다. 변조 방식은 RZ-OOK(Return-to-On-Ok), 가변 펄스 위치 변조(VPPM), 중첩 펄스 위치 변조(OPPM) 및 조광 제어를 적용하였다. 전력 요구사항과 전력 소비는 세 가지 종류의 변조 하에서 $2{\times}2$ STBC-VLC 환경에서 전력 효율을 비교하는 지표로 사용되었다. 조광 제어가 각 변조 체계의 통신 성능에 영향을 미치는지 확인하였다. 확인 결과 VPPM은 세 가지 변조 중 소비량이 더 많았으며 OPPM은 VPPM에 비해 에너지 절감 효과를 보였다.

Keywords

OTNBBE_2018_v18n6_169_f0001.png 이미지

Fig. 1. Model of the 2 × 2 STBC-VLC system 그림 1. 2 × 2 STBC-VLC 시스템

OTNBBE_2018_v18n6_169_f0002.png 이미지

Fig. 2. Example of symbol structures with Dc = 0.8 of modulation schemes 그림 2. 변조 방식들의 Dc = 0.8 일 때 구조 예시

OTNBBE_2018_v18n6_169_f0003.png 이미지

Fig. 3. SNR performance of a 22 STBC-VLC system 그림 3. 22 STBC-VLC 시스템의 SNR 성능

OTNBBE_2018_v18n6_169_f0004.png 이미지

Fig. 4. Power requirement of each modulation scheme in a 2x2 STBC-VLC system 그림 4. 2x2 STBC-VLC 시스템 내 변조 방식별 전력 요구량

OTNBBE_2018_v18n6_169_f0005.png 이미지

Fig. 5. Power consumption vs. SNR when dimming is 30% and 50% 그림 5. 조광이 30%, 50%일 때 전력 소비량 대 SNR

Table 1. Power requirement of each modulation scheme 표 1. 각 변조 방식의 전력 요구량

OTNBBE_2018_v18n6_169_t0001.png 이미지

Table 2. Power consumption of each modulation scheme 표 2. 각 변조 방식의 전력 소비량

OTNBBE_2018_v18n6_169_t0002.png 이미지

Table 3. The STBC-VLC environment of simulation 표 3. STBC-VLC 시뮬레이션 환경

OTNBBE_2018_v18n6_169_t0003.png 이미지

Table 4. Power consumption of each modulation scheme in accordance with dimming 표 4. 조광에 따른 각 변조 방식의 전력 소비량

OTNBBE_2018_v18n6_169_t0004.png 이미지

References

  1. L. Kavehrad, "Sustainable energy-efficient wireless applications using light," IEEE Commun. Mag., vol. 48, no. 12, pp. 66-73, Dec. 2010. DOI: https://doi.org/10.1109/mcom.2010.5673074
  2. Wondae Kim, Industry and Technology trend Analysis of Visible Light Communication (VLC), BIR, 2011.
  3. A. Jovicic, J. Li, et al., "Visible Light Communication: Opportunities, Challenges and the Path to Market," IEEE Commun. Magazine, vol. 51, no 12, pp. 26-32, Dec. 2013. DOI: https://doi.org/10.1109/mcom.2013.6685754
  4. L. Halonen, E. Tetri, and P. Bhusal, "Guidebook on energy efficient electric lighting for buildings," Ph.D. dissertation, Dept. Electron. Lighting Unit, Aalto Univ. School Sci. Technol., Espoo, Finland, 2010.
  5. D. Tsonev et al., "A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride ${\mu}$LED," IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637-640, Apr. 1, 2014. DOI: https://doi.org/10.1109/lpt.2013.2297621
  6. Y. Wang et al., "875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system," in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng., Mar. 2013, pp. 1-3, paper. OTh1G.3. DOI: https://doi.org/10.1364/ofc.2013.oth1g.3
  7. S. Rajagopal, R. Roberts, and S.-K. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support," Communications Magazine, IEEE, vol. 50, no. 3, pp. 72-82, March 2012. DOI: https://doi.org/10.1109/mcom.2012.6163585
  8. H. Elgala, R. Mesleh, and H. Haas, "Indoor optical wireless communication: potential and state-of-the-art," Communications Magazine, IEEE, vol. 49, no. 9, pp. 56-62, 2011. DOI: https://doi.org/10.1109/mcom.2011.6011734
  9. Xiaodong Wang and Vincent Poor, "Wireless Communication Systems: Advanced Techniques for Signal Reception", Pearson Education (Asia) Pte. Ltd, 2004.
  10. Z. Ghassemlooy, W. Popoola, S. Rajbhandari, Optical Wireless Communications. System and Channel Modelling with MATLAB. CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013.
  11. 802.15.7 PHY and MAC Standard for Short Range Wireless Optical Communication Using Visible Light, IEEE Std., 2010. DOI: https://doi.org/10.1109/ieeestd.2011.6016195
  12. T. Ohtsuki, I. Sasase, and S. Mori, "Lower bounds on capacity and cutoff rate of differential overlapping pulse position modulation in optical direct-detection channel," IEICE Trans. Commun., vol. E77-B, pp. 1230-1237, Oct. 1994.
  13. J. Garcia, M. A. Dalla-Costa, J. Cardesin, J. M. Alonso, and M. Rico-Secades, "Dimming of high-brightness LEDs by means of luminous flux thermal estimation," IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1107-1114, Apr. 2009. DOI: https://doi.org/10.1109/tpel.2008.2011989
  14. H. Park and J. R. Barry, "Modulation analysis for wireless infrared communications", in Proc. 1995 IEEE Int. Conf. Commun., vol. 2, pp.1182-1186. DOI: https://doi.org/10.1109/icc.1995.524287
  15. A. B. Siddique and M. Tahir, "Joint brightness control and data transmission for visible light communication systems based on white LEDs," in Proc. 8th Annu. IEEE Consum. Commun. Netw. Conf. Smart Spaces Pers. Area Netw., Jan. 2011, pp. 1026-1030. DOI: https://doi.org/10.1109/ccnc.2011.5766321
  16. 802.15.7, "IEEE standard for local and metropolitan area networks. Part 15.7: Short-Range Wireless Optical Communication using Visible Light", September 2011. DOI: https://doi.org/10.1109/ieeestd.2011.6016195
  17. K. Lee, H. Park, "Modulations for visible light communications with dimming control", IEEE Photonics Letters,. Vol.23, pp. 1136-1138, 2011. DOI: https://doi.org/10.1109/lpt.2011.2157676
  18. Q. Wang, Z. Wang, and L. Dai, "Asymmetrical hybrid optical OFDM for visible light communications with dimming control," IEEE Photon.Technol. Lett., vol. 27, no. 9, pp. 974-977, May 1, 2015. DOI: https://doi.org/10.1109/iccw.2017.7962628
  19. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE, vol. 85, no. 2, pp. 265-298, Feb. 1997. DOI: https://doi.org/10.1109/5.554222
  20. V. Jungnickel, V. Pohl, S. Noenning, and C. von Helmolt, "A physical model for the wireless infrared communication channel," IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 631-640, 2002. DOI: https://doi.org/10.1109/49.995522
  21. J.B.Carruthers and J.M.Kahn, "Modeling of Nondirected Wireless Infrared Channels", IEEE Trans. Commun, vol. 45, no.10, pp.1260-1268, 1997. DOI: https://doi.org/10.1109/26.634690
  22. Tsung Hui Chang, Wing-Kin Ma and Chong-Yung Chi, "ML-Detection of Orthogonal Space-Time Block Coded OFDM in Unknown Block Fading Channels," IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1637-1679, Apr. 2008. DOI: https://doi.org/10.1109/tsp.2007.909229
  23. T. Fath and H. Haas, "Performance comparison of MIMO techniques for optical wireless communications in indoor environments", IEEE Trans. Commun., vol. 61, no. 2, pp. 733-742, 2013. DOI:https://doi.org/10.1109/tcomm.2012.120512.110 578
  24. R. Klemm (ed.), Applications of Space-Time Adaptive Processing, IEE, London, UK, 2004. DOI: https://doi.org/10.1049/pbra014e
  25. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron., vol. 50, pp. 100-107, 2004. DOI: https://doi.org/10.1109/tce.2004.1277847
  26. J. Grubor, S. Randel, K. D. Langer, and J. W. Waleski, "Broadband information broadcasting using LED-based interior lighting," J. Lightw. Technol., vol. 26, pp. 3883-3892, 2008. DOI: https://doi.org/10.1109/jlt.2008.928525
  27. Z. Huang and Y. Ji, "Efficient user access and lamp selection in LED based visible light communication network," Chin. Opt. Lett., vol. 10, no. 5, pp. 6021-6025, 2012. DOI: https://doi.org/10.3788/col201210.050602