References
- Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS): assessing the accuracy of distribution models. J Appl Ecol. 2006;43:1223-32. https://doi.org/10.1111/j.1365-2664.2006.01214.x
- Boden S, Pyttel P, Eastaugh C. Impacts of climate change on the establishment, distribution, growth and mortality of Swiss stone pine (Pinus cembra L.). iForest - biogeosciences and Forestry. 2010;3:82-5. https://doi.org/10.3832/ifor0537-003
- Buytaert W, Cuesta-Camacho F, Tobon C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr. 2011;20:19-33. https://doi.org/10.1111/j.1466-8238.2010.00585.x
- Crossman ND, Bryan BA, Summers DM. Identifying priority areas for reducing species vulnerability to climate change: priorities for reducing species vulnerability to climate change. Divers Distrib. 2012;18:60-72. https://doi.org/10.1111/j.1472-4642.2011.00851.x
- Diaz S, Demissew S, Carabias J, et al. The IPBES conceptual frameworkconnecting nature and people. Curr Opin Environ Sustain. 2015;14:1-16. https://doi.org/10.1016/j.cosust.2014.11.002
- Dumais D, Prevost M. Management for red spruce conservation in Quebec: the importance of some physiological and ecological characteristics - a review. For Chron. 2007;83:378-91. https://doi.org/10.5558/tfc83378-3
- Dutta PK, Das AK, Sundriyal RC. Alpine timberline research gap in Himalaya: a literature review. Indian Forester. 2014;140:419-27.
- Engler R. Migclim user guide (for R). Migclim R user guide. Version 1.1.0; 2012. p. 31.
- Engler R, Guisan A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib. 2009;15:590-601. https://doi.org/10.1111/j.1472-4642.2009.00566.x
- Engler R, Hordijk W, Guisan A. The MIGCLIM R package - seamless integration of dispersal constraints into projections of species distribution models. Ecography. 2012;35:872-8. https://doi.org/10.1111/j.1600-0587.2012.07608.x
- Golicher DJ, Cayuela L, Newton AC. Effects of climate change on the potential species richness of Mesoamerican forests: effects of climate change on potential species richness. Biotropica. 2012;44:284-93. https://doi.org/10.1111/j.1744-7429.2011.00815.x
- Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, et al. Is my species distribution model fit for purpose? Matching data and models to applications: matching distribution models to applications. Glob Ecol Biogeogr. 2015;24:276-92. https://doi.org/10.1111/geb.12268
- Hartley S, Harris R, Lester PJ. Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecol Lett. 2006;9:1068-79. https://doi.org/10.1111/j.1461-0248.2006.00954.x
- Heide OM. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol. 2003;23:931-6. https://doi.org/10.1093/treephys/23.13.931
- Higgins SI, Cark JS, Nathan R, et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J Ecol. 2003;91:341-7. https://doi.org/10.1046/j.1365-2745.2003.00781.x
- IPCC. Intergovernmental panel on climate change. Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, et al., editors. Climate change 2013: the physical science basis. Cambridge and New York: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; 2013.
- Kong WS. The alpine and subalpine geoecology of Korean Peninsula. Korean J Ecol. 1998;21:383-7.
- Kong WS. Biogeography of Korean plants. Seoul: Geobook; 2007. p. 355.
- Kong WS, Kim G, Lee SG, et al. Vegetation and landscape characteristics at the peaks of Mts. Seorak, Jiri and Halla. 2017;8:401-14 [Korean, abstract in English].
- Kong WS, Kim K, Lee S, et al. Distribution of high mountain plants and species vulnerability against climate change. J Environ Impact Assess. 2014;23:119-36. https://doi.org/10.14249/eia.2014.23.2.119
- Koo KA, Kong WS, Nibbelink NP, et al. Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the Korean Peninsula. PLoS One. 2015;10:e0134043. https://doi.org/10.1371/journal.pone.0134043
- Koo KA, Kong WS, Park SU, et al. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecol Model. 2017;353:5-16. https://doi.org/10.1016/j.ecolmodel.2017.01.018
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula I. Pocheon: South coast province. Korea National Arboretum; 2004.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula II. Pocheon: South province (Jeollado & Jirisan). Korea National Arboretum; 2005.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula III. Pocheon: Central & South province (Chungcheong-do). Korea National Arboretum; 2006.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula IV. Pocheon: Central & south province (Gyeongsangbuk-do). Korea National Arboretum; 2007.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula V. Pocheon: Central province (Geonggi-do). Korea National Arboretum; 2008.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula VI. Pocheon: Central province (Gangwon-do). Korea National Arboretum; 2009a.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula VII. Pocheon: South province (Gyeongsangnam-do) and Ulleungdo province. Korea National Arboretum; 2009b.
- Korea National Arboretum. Distribution maps of vascular plants of Korean Peninsula IX. Pocheon: West & South coast province. Korea National Arboretum; 2011.
- Korea National Park Service (2018). Korea National Park Service 22, Hyeoksin-ro, Wonju-si, Gangwon-do, Korea. http://knps.or.kr. Accessed 05 Oct 2018.
- Lee SG. Effects of temperature increases on the distribution of plants and vulnerability analysis. Kyunghee University, South Korea: MS Thesis; 2011. p. 284.
- Lobo JM, Jimenez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 2008; 17:145-51. https://doi.org/10.1111/j.1466-8238.2007.00358.x
- Miller K, Hyun K (2009). Ecological corridors: legal framework for the Baekdu Daegan Mountain System (South Korea). South Korea 13.
- Ministry of Environment (2018). Ministry of Environment, Republic of Koreaclimate change outlook. http://eng.me.go.kr/eng/web/index.do?menuId=220. Accessed 23 Sep 2018.
- Myking T, Heide OM. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol. 1995;15:697-704. https://doi.org/10.1093/treephys/15.11.697
- National Institute for Environmental Research. The second and third national ecosystem survey: 1997-2012. Incheon: National Institute of Environmental Research; 2013.
- Noh I, Chung JM, Cho MG, et al. The flora of subalpine vascular plants in Seseok area of Jirisan National Park, vol. 8; 2017. p. 201-11. https://doi.org/10.15531/ksccr.2017.8.3.201
- Park J, Shin H, Jung H, et al (2015). A study on adaptation of subalpine ecosystem to climate submitted to change. A reported submitted to National Institute of Ecology, Korea. [Korean, abstract in English].
- Park SU, Koo KA, Hong S. Climate-related range shifts of Ardisia japonica in the Korean Peninsula: a role of dispersal capacity. J Ecol and Environ. 2017;41:38. https://doi.org/10.1186/s41610-017-0055-y
- Park SU, Koo KA, Kong WS. Potential impact of climate change on distribution of warm temperate evergreen broad-leaved trees in the Korean Peninsula. J Korean Geographical Soc. 2016a;51:201-17 [Korean, abstract in English].
- Park SU, Koo KA, Seo C, et al. Potential impact of climate change on distribution of Hedera rhombea in the Korean Peninsula. J Climate Change Res. 2016b;7: 325-34 [Korean, abstract in English]. https://doi.org/10.15531/ksccr.2016.7.3.325
- Pearsons RG. Species distribution modeling for conservation educators and practitioners. Lessons in Conservation. 2010;3:54-8.
- Portnoy S, Willson MF. Seed dispersal curves: behavior of the tail of the distribution. Evol Ecol. 1993;7:25-44. https://doi.org/10.1007/BF01237733
- Pramanik M, Paudel U, Mondal B, et al. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Climate Risk Manag. 2018;19:94-105. https://doi.org/10.1016/j.crm.2017.11.002
-
Rixen C, Dawes MA, Wipf S, Hagedorn F. Evidence of enhanced freezing damage in treeline plants during six years of
$CO_2$ enrichment and soil warming. Oikos. 2012;121:1532-43. https://doi.org/10.1111/j.1600-0706.2011.20031.x - Robert JH, Steven P, John L et al (2017). Package'dismo'. https://cran.r project.org/web/packages/dismo. Accessed 23 Sep 2018.
- Sevanto S, Suni T, Pumpanen J, et al. Winter time photosynthesis and water uptake in a boreal forest. Tree Physiol. 2006;26:749-57. https://doi.org/10.1093/treephys/26.6.749
- Shin MS, Changwan S, Park SU, et al. Prediction of potential habitat of Japanese evergreen oak (Quercus acuta Thunb.) considering dispersal ability under climate change. J Environ Impact Assess. 2018;27:291-306 [Korean, abstract in English].
- Swets J. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285-93. https://doi.org/10.1126/science.3287615
- Thuiller W, Lavorel S, Araujo MB. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr. 2005; 14:347-57. https://doi.org/10.1111/j.1466-822X.2005.00162.x
- Vellend M, Myers JA, Gardescu S, et al. Dispersal of trillium seeds by deer: implications for long distance migration of forest herbs. Ecology. 2003;84: 1067-72. https://doi.org/10.1890/0012-9658(2003)084[1067:DOTSBD]2.0.CO;2
Cited by
- Assessing Habitat Suitability of Parasitic Plant Cistanche deserticola in Northwest China under Future Climate Scenarios vol.10, pp.9, 2018, https://doi.org/10.3390/f10090823
- Habitat preference of wild boar (Sus scrofa) for feeding in cool-temperate forests vol.43, pp.3, 2019, https://doi.org/10.1186/s41610-019-0126-3
- Potential impact of climate change on plant invasion in the Republic of Korea vol.43, pp.4, 2019, https://doi.org/10.1186/s41610-019-0134-3
- The fate of páramo plant assemblages in the sky islands of the northern Andes vol.31, pp.6, 2020, https://doi.org/10.1111/jvs.12898
- Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea vol.45, pp.1, 2018, https://doi.org/10.1186/s41610-021-00182-1
- Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change vol.127, pp.None, 2018, https://doi.org/10.1016/j.ecolind.2021.107762
- Potential Distribution of Amphibians with Different Habitat Characteristics in Response to Climate Change in South Korea vol.11, pp.8, 2018, https://doi.org/10.3390/ani11082185
- Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea vol.10, pp.8, 2018, https://doi.org/10.3390/plants10081604
- Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea vol.10, pp.3, 2018, https://doi.org/10.12651/jsr.2021.10.3.246
- Assessment of the Spatial Invasion Risk of Intentionally Introduced Alien Plant Species (IIAPS) under Environmental Change in South Korea vol.10, pp.11, 2018, https://doi.org/10.3390/biology10111169