The Comparison of Phenolic Compounds by Various Sections of Acanthopanacis Caulis

오갈피나무속 식물 줄기의 부위별 페놀성 성분 비교

  • Lee, Jae Bum (Department of Oriental Medical Food & nutrition, Semyung University) ;
  • Yun, Gee Young (School of Oriental Medical Bioscience, Semyung University) ;
  • Yook, Chang Soo (College of Pharmacy, Kyung Hee University) ;
  • Ko, Sung Kwon (Department of Oriental Medical Food & nutrition, Semyung University)
  • 이재범 (세명대학교 한방식품영양학부) ;
  • 윤지영 (세명대학교 한방바이오융합과학부) ;
  • 육창수 (경희대학교 약학대학) ;
  • 고성권 (세명대학교 한방식품영양학부)
  • Received : 2018.11.12
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

This study was carried out to obtain the basic informations for phenolic compounds by various sections of Acanthopanacis Caulis. The phenolic compounds of Korean Acanthopanacis bark and lignum (Acanthopanax divaricatus var. albeofructus, Acanthopanax koreanum) were measured by the HPLC analysis. The content of total phenolic components of Acanthopanax koreanum bark (1.532%) was about 9.9 times higher than that of Acanthopanax koreanum lignum (0.155%). And also, The content of total phenolic components of Acanthopanax divaricatus var. albeofructus bark (0.420%) was about 2.8 times higher than that of Acanthopanax divaricatus var. albeofructus lignum (0.149%). Eleutheroside E, a functional ingredient of Acanthopanacis Caulis, showed 3.6 times higher contents of Acanthopanax koreanum bark (0.144%) than Acanthopanax koreanum lignum (0.040%). In the case of Acanthopanax divaricatus var. albeofructus bark (0.129%), the content of the eleutheroside E was 1.7 times higher than that of the Acanthopanax divaricatus var. albeofructus lignum (0.074%).

Keywords

References

  1. Yook, C. S. (2001) Medicinal herbs of Acanthopanax in Asia, 1-174, Kyungwon Media, Seoul.
  2. Ovodov, Y. S., Frolova, G. M., Nefedova, M. Y. and Elyakov, G. B. (1996) The glycosides of Eleutherococcus senticosus Max. I. Isolation and some properties of eleutherosides B and E. Khim. prirodn. soedin. 1: 3-7.
  3. Ovodov, Y. S. and Flolova, G. M. (1971) Triterpenoidal glycosides of Eleuterococcus sessiliflorus leaves II. Khim. Prirodn. Soedin. 1: 618-622.
  4. Zhao, L. S., An, Q., Qin, F. and Xiong, Z. L. (2014) Simulataneous determination of six constituents in the fruit of Acanthopanax sessiliflorus (Rupr. et maxim.) seem. by HPLC-UV. Natural Product Research 7: 500-502.
  5. He, C., Chen, X., Zhao, C., Qie, Y., Yan, Z. and Zhu, X. (2014) Eleutheroside E ameliorates arthritis severity in collagen-induced arthritis mice model by suppressing inflammatory cytokine release. Inflammation 5: 1533-1543.
  6. Ahn, J., Um, M. Y., Lee, H., Jung, C. H., Heo, S. H. and Ha, T. Y. (2013) Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice. Evid. Based Complement Alternat. Med. 2013: 934183.
  7. Lall, N., Kishore, N., Binneman, B., Twilley, D., Plessis-Stoman, D., Boukes, G. and Hussein, A. (2015) Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res. 29: 1752-1756. https://doi.org/10.1080/14786419.2014.999058
  8. Gong, X., Zhang, L., Jiang, R., Wang, C. D., Yin, X. R. and Wan, J. Y. (2014) Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J. Appl. Toxicol. 34: 265-271. https://doi.org/10.1002/jat.2876
  9. Song, Y. Y., Li, Y. and Zhang, H. Q. (2010) Therapeutic effect of syringin on adjuvant arthritis in rats and its mechanisms. Yao Xue Xue Bao 45: 1006-1011.
  10. Li, C., Wang, X. Y., Hu, X. W., Fang, H. T. and Qiao, S. Y. (2008) Determination of eleutheroside B in antifatigue fraction of Acanthopanax senticosus by HPLC. Zhongguo Zhong Yao Za Zhi 33: 2800-2802.
  11. Niu, H. S., Liu, I. M., Cheng, J. T., Lin, C. L. and Hsu, F. L. (2008) Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 74: 109-113. https://doi.org/10.1055/s-2008-1034275
  12. Choi, J., Shin, K. M., Park, H. J., Jung, H. J., Kim, H. J., Lee, Y. S., Rew, J. H. and Lee, K. T. (2004) Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 70: 1027-1032. https://doi.org/10.1055/s-2004-832642
  13. An, H. J., Yook, C. S., Kim, H. C. and Ko, S. K. (2017) Measurement of characteristic phytochemical levels in different Acanthopanax Species by HPLC, Yakhak Hoeji 61: 90-95. https://doi.org/10.17480/psk.2017.61.2.90
  14. An, H. J., Nam, Y. M., Yang, B. W., Park, J. D., Yook, C. S., Kim, H. C. and Ko, S. K. (2017) The comparison of phytochemical components from the berry of Acanthopanax Species. Kor. J. Pharmacogn. 48: 5-9.
  15. Yoo, A., Narayan, V. P., Hong, E. Y., Whang, W. K. and Park, T. (2017) Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver. Sci. Rep. 7: 2251. https://doi.org/10.1038/s41598-017-02416-6
  16. Pan, R., Dai, Y., Gao, X. and Xia, Y. (2009) Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int. Immunopharmacol. 9: 859-869. https://doi.org/10.1016/j.intimp.2009.02.019
  17. Liu, J., Zhang, Z., Guo, Q., Dong, Y., Zhao, Q. and Ma, X. (2918) Syringin prevents bone loss in ovariectomized mice via TRAF6 mediated inhibition of NF-${\kappa}B$ and stimulation of PI3K/AKT. Phytomedicine 42: 43-50.
  18. Kim, B., Kim, M. S. and Hyun, C. K. (2017) Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice. Biochem. Biophys. Res. Commun. 488: 40-45. https://doi.org/10.1016/j.bbrc.2017.05.003
  19. Zhang, A., Liu, Z., Sheng, L. and Wu, H. J. (2017) Protective effects of syringin against lipopolysaccharide-induced acute lung injury in mice. Surg. Res. 209: 252-257. https://doi.org/10.1016/j.jss.2016.10.027
  20. Li, F., Zhang, N., Wu, Q., Yuan, Y., Yang, Z., Zhou, M., Zhu, J. and Tang, Q. (2017) Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int. J. Mol. Med. 39: 199-207. https://doi.org/10.3892/ijm.2016.2824
  21. Lall, N., Kishore, N., Binneman, B., Twilley, D., van, de, Venter, M., du, Plessis-Stoman, D., Boukes, G. and Hussein, A. (2015) Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res. 29: 1752-1756. https://doi.org/10.1080/14786419.2014.999058
  22. Cui, Y., Zhang, Y. and Liu, G. (2014) Syringin may exert sleep-potentiating effects through the NOS/NO pathway. Fundam. Clin. Pharmacol. 29: 178-184.