Sparassis crispa (Wulf.) Extract Inhibits IL-1β Stimulated Inflammatory Mediators Production on SW1353 Human Chondrocytes

인간 유래 연골세포에서 꽃송이버섯 추출물의 염증성 매개인자 억제 효과

  • Received : 2018.11.30
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

Osteoarthritis (OA) is the most common form of joint disease, characterized by articular cartilage, osteonecrosis, and osteochondral bone erosion. It is an early, progressive disease that combines joint stiffness and joint pain and reduces cartilage function and condition. Interleukin-1 beta ($IL-1{\beta}$) is thought to be important to the pathogenesis of OA and significantly increases the expression of matrix metalloproteinases (MMPs), which play an important role in cartilage degradation in OA. Sparassis crispa (Wulf.) is an edible / medicinal mushroom that has been reported to variety of biological activities. In this study, investigated the Anti-inflammatory effect of Sparassis crispa (Wulf.) ethanol extract (SCE) on $IL-1{\beta}$ stimulated SW1353 chondrocytes. SCE decreased the expression and activity of MMPs by $IL-1{\beta}$ and decreased the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) associated with the inhibition of prostaglandin E2($PGE_2$) in $IL-1{\beta}$ stimulated SW-1353 chondrocytes. In addition, SCE inhibits the expression of MAPK (mitogen-activated protein kinase) and $NF-{\kappa}B$ (nuclear factor-kappa B) signaling in $IL-1{\beta}$ stimulated SW-1353 cells, and SCE inhibits the production of reactive oxygen species (ROS) through heme oxygenase-1 (HO-1) expression. Thus, it is suggested that SCE has a potential as an anti-inflammatory agent in osteoarthritis treatments.

Keywords

References

  1. Son, Y. O. and Chun, J. S. (2018) Estrogen-related receptor is a novel catabolic regulator of osteoarthritis pathogenesis. BMB Rep. 51: 165-166. https://doi.org/10.5483/BMBRep.2018.51.4.019
  2. Hochberg, M., Chevalier, X., Henrotin, Y., Hunter, D. J. and Uebelhart, D. (2013) Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: What's the evidence. Curr Med Res Opin. 29: 259-267. https://doi.org/10.1185/03007995.2012.753430
  3. Martel, P. J., Boileau, C., Pelletier, J. P. and Roughley, P. J. (2008) Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22: 351-384. https://doi.org/10.1016/j.berh.2008.02.001
  4. Fernandes, J. C., Martel, P, J. and Pelletier, J. P. (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology. 39: 237-246.
  5. Abramson, S. B., Attur, M., Amin, A. R. and Clancy, R. (2001) Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol. Rep. 3: 535-541. https://doi.org/10.1007/s11926-001-0069-3
  6. Ding, Q. H., Cheng, Y., Chen, W. P., Zhong, H. M. and Wang, X. H. (2013) Celastrol, an inhibitor of heat shock protein 90_potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. Eur. J. Pharmacol. 708: 1-7. https://doi.org/10.1016/j.ejphar.2013.01.057
  7. Ndisang, J. F. (2017) Synergistic interaction between heme oxygenase (HO) and nuclear-factor E2-related factor-2 (Nrf2) against oxidative stress in cardiovascular related diseases. Curr. Pharm. Des. 23: 1465-1470. https://doi.org/10.2174/1381612823666170113153818
  8. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73: 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  9. Abraham, N. G. and Kappas, A. (2008) Pharmacological and clinical aspects heme oxygenase. Pharmcol. Rev. 60: 79-127. https://doi.org/10.1124/pr.107.07104
  10. Kumar, A., Takada, Y., Boriek, A. M. and Aggarwal, B. B. (2004) Nuclear factorkappaB: its role in health and disease. J. Mol. Med (Berl). 82: 434-448.
  11. Thalhamer, T., McGrath, M. A. and Harnett, M. M. (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology 47: 409-414.
  12. Hemavathy, H., Ibrahim, J., Areeful, H. and Endang, K. (2018) Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF?${\kappa}B$/MAPK/PI3K?Akt signaling pathways. Phytother. Res. 32: 1-10. https://doi.org/10.1002/ptr.5913
  13. Kirk, P. M., Cannon, P. F., David, J. C. and Stalpers, J. A. (2003) Ainsworth & Bisby's Dictionary of the Fungi. Lichenologist. 35: 365-366. https://doi.org/10.1016/S0024-2829(03)00055-0
  14. Oh, D. S., Park, J. M., Park, H., Ka, K. H. and Chun, W.J. (2009) Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Korean. J. Mycol. 37: 33-40. https://doi.org/10.4489/KJM.2009.37.1.033
  15. Ji, J. D., Lee, Y. Ho. and Song, G. G. (2004) Prostaglandin E2 (PGE2): Roles in Immune Responses and Inflammation. J. Rheum. Dis. 11: 4.
  16. Graham, S., Gamie, Z., Polyzois, I., Narvani, A. A., Tzafetta, K., Tsiridis, E., Helioti, M., Mantalaris, A. and Tsiridis, E. (2009) Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing: in vivo and in vitro evidence. Expert. Opin. Investig. Drugs. 18: 746-766.
  17. Sasaki, K., Hattori, T., Fujisawa, T., Takahashi, K., Inoue, H. and Takigawa, M. (1998) Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J. Biochem. 123: 431-439. https://doi.org/10.1093/oxfordjournals.jbchem.a021955
  18. Tung, J. T., Arnold, C. E., Alexander, L. H., Yuzbasiyan, G. V., Venta, P. J., Richardson, D. W. and Caron, J. P. (2002) Evaluation of the influence of prostaglandin E2 on recombinant equine interleukin-1beta-stimulated matrix metalloproteinases 1, 3, and 13 and tissue inhibitor of matrix metalloproteinase 1 expression in equine chondrocyte cultures. Am. J. Vet. Res. 63: 987-993. https://doi.org/10.2460/ajvr.2002.63.987
  19. Lu, Y. C., Jayakumar, T., Duann, Y. F., Chou, Y. C., Hsieh, C. Y., Yu, S. Y., Sheu, J. R. and Hsiao, G. (2011) Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-${\kappa}B$ signaling in activated SW1353 cells. J. Agric. Food Chem. 59: 4969-4978. https://doi.org/10.1021/jf1046738
  20. Sondergaard, B. C., Schultz, N., Madsen, S. H., Bay-Jensen, A. C., Kassem, M. and Karsdal, M. A. (2010) MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation - divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis Cartilage 18: 279-288. https://doi.org/10.1016/j.joca.2009.11.005
  21. Liacini, A., Sylvester, J., Li, W. Q., Huang, W., Dehnade, F., Ahmad, M. and Zafarullah, M. (2003) Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp. Cell Res. 288: 208-217. https://doi.org/10.1016/S0014-4827(03)00180-0
  22. Lepetsos, P. and Papavassiliou, A. G. (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta. 1862: 576-591. https://doi.org/10.1016/j.bbadis.2016.01.003
  23. Li, D., Xie, G. and Wang, W. (2012) Reactive oxygen species: The 2-edged sword of osteoarthritis. Am. J. Med. Sci. 344: 486-490. https://doi.org/10.1097/MAJ.0b013e3182579dc6
  24. Collins, J. A., Diekman, B. O. and Loeser, R. F. (2018) Targeting aging for disease modification in osteoarthritis. Curr. Opin. Rheumatol. 30: 101-107. https://doi.org/10.1097/BOR.0000000000000456
  25. Marchev, A. S., Dimitrova, P. A., Burns, A. J., Kostov, R. V., Dinkova-Kostova, A. T. and Georgiev, M. I. (2017) Oxidative stress and chronic inflammation in osteoarthritis: Can NRF2 counteract these partners in crime. Ann. N. Y. Acad. Sci. 1401: 114-135. https://doi.org/10.1111/nyas.13407
  26. Ndisang, J. F. (2017) Synergistic interaction between heme oxygenase (HO) and nuclear-factor E2-related factor-2 (Nrf2) against oxidative stress in cardiovascular related diseases. Curr. Pharm. Des. 23: 1465-1470. https://doi.org/10.2174/1381612823666170113153818
  27. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73: 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  28. Baskaran, A., Chua, K. H., Sabaratnam, V., Ram, M. R. and Kuppusamy, U. R. (2017) Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways. BMC Complement Altern Med. 17: 40. https://doi.org/10.1186/s12906-016-1546-6
  29. Lee, C. B. (2012) Anti-inflammation Activity of Water Extracts from Hericium Erinacium among Medicinal Mushrooms. Culi. Sci. & Hos. Res. 18: 233-242.
  30. Marwa, M. A. S., Noha, H. H. and Wafa E. A. (2018) In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complement Altern. Med. 18: 154. https://doi.org/10.1186/s12906-018-2218-5
  31. Yun, W. S., Jung, H. A. and Roh, S. S. (2010) Effect of Phellinus igniarius Quel Extract on the Anti-inflammatory, Antiallergy, Anti-oxidant, Anti-wrinkle. J. Korean Med. Ophthalmol. Otolaryngol. Dermatol. 23: 75-93.