DOI QR코드

DOI QR Code

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate

누설자속 기반 강판 두께별 국부 손상 진단 감도 분석

  • Kim, Ju-Won (Sch. of Architectural Engineering and Landscape Architecture, Sungkyunkwan Univ.) ;
  • Yu, Byoungjoon (Dept. of Convergence of Engineering for Future City, Sungkyunkwan Univ.) ;
  • Park, Sehwan (Dept. of Convergence of Engineering for Future City, Sungkyunkwan Univ.) ;
  • Park, Seunghee (Sch. of Civil. Architectural Engineering and Landscape Architecture, Sungkyunkwan Univ.)
  • 김주원 (성균관대학교 건설환경공학부) ;
  • 유병준 (성균관대학교 미래도시융합공학과) ;
  • 박세환 (성균관대학교 미래도시융합공학과) ;
  • 박승희 (성균관대학교 건설환경공학부)
  • Received : 2018.11.21
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

본 연구에서는 강판에 발생한 국부적인 손상의 진단을 위해 강자성의 연속체 구조물에 적합한 비파괴진단 기법인 누설자속 기법을 적용하였다. 강판시편의 두께 변화에 따른 누설자속 기반 진단 기법의 민감도를 분석하기 위해 각각 다른 두께를 가지는 몇 가지의 강판시편을 준비하였고, 각각의 시편에 3가지 깊이의 인공결함을 가공하였다. 홀센서와 자화요크를 이용하여 일정한 자화밀도를 가지는 누설자속 센서헤드를 제작하여 강판시편으로부터 누설자속 신호를 계측하였다. 센서헤드로부터 수집된 자속신호의 품질향상을 위해 일련의 신호처리 과정을 거쳤으며, 각 손상지점으로부터 계측된 누설자속 신호의 확인을 통해 국부손상 감지의 가능성을 확인하였다. 강판두께에 따른 누설자속 기법의 손상감지 민감도의 분석을 위해 각각 다른 두께의 강판시편으로부터 검출된 MFL 신호에서 P-P value를 정량적으로 추출하였고 그 값을 비교 분석 하였다.

Keywords

HKBJBA_2018_v11n2_53_f0001.png 이미지

Fig. 1. Principle of magnetic flux leakage method (Kim and Park, 2017)

HKBJBA_2018_v11n2_53_f0002.png 이미지

Fig. 2. Principle of Hall effect (Lenz, 1990)

HKBJBA_2018_v11n2_53_f0003.png 이미지

Fig. 3. Magnetic hysteresis curve (B-H curve) (Lacheisserie et al. 2005)

HKBJBA_2018_v11n2_53_f0004.png 이미지

Fig. 4. Permeability hysteresis curve (Shin, 1995)

HKBJBA_2018_v11n2_53_f0005.png 이미지

Fig. 5. Magnetic flux distribution according to magnetization level (Boat et al., 2014)

HKBJBA_2018_v11n2_53_f0006.png 이미지

Fig. 6. Signal processing process for noise reduction

HKBJBA_2018_v11n2_53_f0007.png 이미지

Fig. 7. Fabricated MFL sensor head

HKBJBA_2018_v11n2_53_f0008.png 이미지

Fig. 8. Specifications of steel plate specimen

HKBJBA_2018_v11n2_53_f0009.png 이미지

Fig. 9. Thickness of steel plate specimens

HKBJBA_2018_v11n2_53_f0010.png 이미지

Fig. 10. MFL signals from 2 mm thickness steel plate

HKBJBA_2018_v11n2_53_f0011.png 이미지

Fig. 11. P-P value according to damage depth

HKBJBA_2018_v11n2_53_f0012.png 이미지

Fig. 12. MFL signals from 5 mm thickness steel plate

HKBJBA_2018_v11n2_53_f0013.png 이미지

Fig. 13. MFL signals from 10 mm thickness steel plate

HKBJBA_2018_v11n2_53_f0014.png 이미지

Fig. 14. MFL signals from 5 mm thickness steel plate

HKBJBA_2018_v11n2_53_f0015.png 이미지

Fig. 15. P-P value of MFL signal according to thickness

References

  1. Boat, M., Pearson, N., Lieb, R., Davies, J., James, R., and Woodhead, B. (2014). The factors that affect the defect sizing capabilities of the Magnetic Flux Leakage Technique. 53rd Annual Conference of the British Institute of Non-Destructive Testing.
  2. Goktepe, M. (2001). Non-destructive crack detection by capturing local flux leakage field. Sens. Actuator. A Phys. 91(1-2): 70-72. https://doi.org/10.1016/S0924-4247(01)00511-8
  3. Kang, D., Oh, J.-T., Kim, J.-W., Park, S. (2015). Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition. Journal of the Korean Society for Railway. 18(5): 401-409. https://doi.org/10.7782/JKSR.2015.18.5.401
  4. Kim, J.-W., Park, M., Kim, J., and Park, S. (2018). Improvement of MFL sensing-based damage detection and quantification for steel bar NDE. Smart Structures and Systems. 22(2): 239- 247. https://doi.org/10.12989/SSS.2018.22.2.239
  5. Kim, J.-W. and Park, S. (2017). Magnetic flux leakage-based local damage detection and quantification for steel wire rope nondestructive evaluation. J. Intell. Mater. Syst. Struct. 29(17): 3396-3410. https://doi.org/10.1177/1045389X17721038
  6. Korea Highway Corporation (2005). A study for preventive maintenance of bridge. Road & Traffic ST-05-09.
  7. Lacheisserie, E. D. T. D., Gignoux, D., and Schienker, M. (2005). Magnetism: Materials and Applications. Springer, Boston, USA.
  8. Lee, M.-G. and Lee, S.-Y. (2008). A Study on the Fatigue Behavior of the Welded Structural Details in Plate Girder. J. of Korean Society of Safety. 23(2): 14-20.
  9. Lenz, J. E. (1990). A review of magnetic sensors. Proc. of the IEEE. 78(6): 973-989. https://doi.org/10.1109/5.56910
  10. Ministry of Land, Infrastructure and Transport (2017). Yearbook of road bridge and tunnel statistics 2017. MOLIT 11-1613000- 000108-10.
  11. Mukhopadhyay, S. and Srivastava, G. P. (2008). Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor. Measurement Science and Technology. 19(1): 1-8.
  12. Park, J.-U. and Park, K.-H. (2008). Fatigue Life Evaluation of Steel Bridge with Welding Defects. J. of Advanced Engineering and Technology. 1(2): 307-314.
  13. Park, S. H. and Park, G. S. (2002). Research on MFL PIG Design for the Inspection of Underground Gas Pipeline. J. of the Korean Society for Nondestructive Testing. 22(2): 177-186.
  14. Park, S., Kim, J.-W., Lee, C., and Lee, J.-J. (2014). Magnetic Flux Leakage Sensing-Based Steel Cable NDE Technique. Shock and Vibration, 2014: 929341.
  15. Ramsden, E. (2006). Hall-effect Sensors: Theory and Applications. 2nd ed.. Newnes Books, Oxford, UK.
  16. Shin, Y.-K. (1995). Numerical Prediction of Operating Conditions for Magnetic Flux Leakage Inspection of Moving Steel Sheets. Proc. of the Korean Society for Nondestructive Testing. 1995: 52-56.
  17. Shi, Y., Zhang, C., Li, R., Cai, M., and Jia, G. (2015). Theory and application of magnetic flux leakage pipeline detection. Sensors. 15(12): 31036-31055. https://doi.org/10.3390/s151229845