DOI QR코드

DOI QR Code

실지진하중 하에서의 지반 액상화 발생을 모사하기 위한 조합 정현하중에 대한 실험적 고찰

Experimental Investigation of Combined Sinusoidal Loads to Simulate Soil Liquefaction Triggering under Real Earthquake Loads

  • 최재순 (서경대 토목건축공학과) ;
  • 백우현 (서경대 토목건축공학과)
  • 투고 : 2018.12.02
  • 심사 : 2018.12.26
  • 발행 : 2018.12.31

초록

이 연구의 목적은 액상화를 유발시키는 진동하중의 특성을 분석하여 실지진하중 하에서의 지반 내 과잉간극수압의 거동을 잘 모사할 수 있는 표준 진동하중을 제안하고 그 타당성을 검토하는 것이다. 이를 위해 우선, 실내진동시험에서 사용해 오던 정현하중이 실제 지진 하에서의 발생하는 액상화 거동과 다소 차이가 있음을 사례연구와 실험연구를 통해 재고찰하였다. 또한, 실지진하중 하에서의 지반 내 과잉간극수압의 거동을 잘 모사할 수 있는 새로운 유형의 조합형 정현하중을 제안하고 이를 실내진동시험 및 진동대시험을 통해 타당성을 검토하였다. 진동대시험은 주문진 표준사를 이용하여 상대밀도 40%로 재성형하였으며 정현하중 및 조합형 정현하중 시험에서는 1 Hz의 진동재하주기로 통일하여 실험을 수행하였다. 이때, 정현하중시험에서는 0.3g로 최대하중을 재하하였으며 조합형 정현하중실험에서는 최대하중 0.03 g의 1차 정현하중과 0.3 g의 2차 정현하중을 재하하였다. 또한, 1차 정현하중의 재하시간은 5 초, 10 초 및 15 초로 변화시켜 시험을 수행하였다. 연구결과, 기존의 정현하중시험과 1차 정현하중을 5초간 재하한 조합형 정현하중시험에서는 과잉간극수압의 변화가 점진적으로 증가하는 경향을 나타낸 반면, 1차 정현하중을 10초와 15초로 재하한 경우에는 2차 정현하중이 재하되는 시점에서 과잉간극수압이 급격히 상승하는 경향을 나타냄으로 실지진하중 하에서의 유발되는 지반 내 과잉간극수압을 잘 모사하는 것으로 나타났다. 연구결과, 상대밀도가 40%인 모래지반에 대해서는 제안된 조합형 정현하중이 효과가 있을 것으로 판단되며 이때, 1차 정현하중의 재하시간은 10초를 초과하는 것이 적절하다고 판단된다.

This study is an experimental comparison on the fact that the sinusoidal load, which has been used so far in the laboratory cyclic test, which is an important part of the liquefaction triggering study, is somewhat different from the phenomenon that causes the soil liquefaction during the earthquake loading. To this end, this study proposes a new type of combined sinusoidal load and compares it with experimental results to load the conventional sine wave. In the comparison, the shaking table tests were carried out and the sample in the tests was remolded with the relative density of 40%, which is a condition where liquefaction is easy to occur. Firstly, the conventional cyclic test was carried out under the condition that with the amplitude of sine wave was 0.3 g. Additionally, 3 types of tests were performed using the combination loads made up with 0.03 g sinusoidal load and 0.3g sinusoidal load. At that time, the loading time for the first sinusoidal load were changed with 5 seconds, 10 seconds, and 15 seconds. As a result, the test with the conventional sine wave and the test with the first sinusoidal loading for 5 seconds showed that the change of the pore water pressure gradually increased. But in the tests with the combined sinusoidal load which changed the first sinusoidal loading time with 10 and 15 seconds, it was found that the pore water pressure suddenly rose at a certain instant and liquefaction occurs. From the experimental comparison, it is judged that it is appropriate that the time of the first sine wave is over 10 seconds at the proposed combined load for the soil condition with relative density 40%.

키워드

HKBJBA_2018_v11n2_29_f0001.png 이미지

Fig. 1. Type of dynamic loadings (Choi et al., 2007)

HKBJBA_2018_v11n2_29_f0002.png 이미지

Fig. 2. Comparison on Dynamic loading test results (Choi et al., 2007)

HKBJBA_2018_v11n2_29_f0003.png 이미지

Fig. 3. Representative earthquake records in recent seismic design of Korea

HKBJBA_2018_v11n2_29_f0004.png 이미지

Fig. 4. New standard for response spectrum on the rock in Korea (MOIS, 2017)

HKBJBA_2018_v11n2_29_f0005.png 이미지

Fig. 5. New combined sinusoidal load for real earthquake simulation

HKBJBA_2018_v11n2_29_f0006.png 이미지

Fig. 6. Results of cyclic triaxial test

HKBJBA_2018_v11n2_29_f0007.png 이미지

Fig. 7. Procedure of shaking table test

HKBJBA_2018_v11n2_29_f0008.png 이미지

Fig. 8. Results of shaking table test

Table 1. Summary of PBD III papers’ related to liquefaction Total number of Presentation paper

HKBJBA_2018_v11n2_29_t0001.png 이미지

Table 2. Shaking table test condition

HKBJBA_2018_v11n2_29_t0002.png 이미지

참고문헌

  1. Choi, Jae Soon, Jang, Seo Yong, and Kim, Soo Il (2007), Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings, Journal of EESK, Vol.11, No.2, pp.81-94.
  2. EESK (1997), Seismic Design Standard II.
  3. EESK (1999), Seismic Design Guideline for Port and Harbor.
  4. Kim, Soo Il, Park, Inn Joon, and Choi, Jae Soon (2000), A Study on the Assesment of Liquefaction Potential in Korea, Journal of Korean Society of Civil Engineers, KSCE, Vol.20, No.2C, pp.129-139.
  5. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, pp.220-223.
  6. Kwan, W. S and Huaz, J. "Effects of irregular loading on sand responses before and after liquefaction initiation", Proceeding of the 11th NCEE, Earthquake Engineering Research Institute, LA, CA, 2018.
  7. Ministry of the Interior and Safety (2017), Common application for Seismic Design Standard.
  8. New-zealand Geotechnical Society (2016), Earthquake geotechnical engineering practice: module 3. Indentification, assessment, and mitigation of liquefaction hazards, Ministry of business, innovation & employment.
  9. Seed, H. B. and Idriss, I. M. (1971), Simplified Procedure for Evaluating Soil Liquefaction Potential, Journal of the Soil Mechanics and Foundations, Vol.97, pp.1249-1273.
  10. Tonkin & Taylor (2015), Liquefaction vulnerability and geotechnical assessment guidance, Report with Gisborne district council.
  11. Youd, T. L. and Noble, S. K. (1997), Magnitude Scaling Factor, NCCER workshop on Evaluation of Liquefaction Resistance of Soils, Buffalo, pp.149-165.