Acknowledgement
Supported by : National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province of China
References
- M. A. Arino and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735.
- A. Benyi and T. Oh, Best constants for certain multilinear integral operators. J. Inequal. Appl., 2006, 1-12.
- C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Academic Press, 1988.
-
S. Boza and J. Soria, Norm estimates for the Hardy operator in terms of
$B_p$ weights, Proc. Amer. Math. Soc 145 (2017), 2455-2465. https://doi.org/10.1090/proc/13604 - J. Chen, D. Fan and J. Li, Hausdorff operators on function spaces, Chin. Ann. Math. Ser. B 33 (2012), 537-556. https://doi.org/10.1007/s11401-012-0724-1
- J. Chen, D. Fan, X. Lin and J. Ruan, The fractional Hausdorff operator on Hardy spaces, Anal. Math. 42 (2016), 1-17. https://doi.org/10.1007/s10476-016-0101-5
- J. Chen, D. Fan and S. Wang, Hausdorff operators on Eulidean spaces, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), 548-564. https://doi.org/10.1007/s11766-013-3228-1
- J. Chen, D. Fan and C. Zhang, Boundedness of Hausdorff operators on some product Hardy type spaces, Appl. Math. J. Chinese Univ. 27 (2012), 114-126. https://doi.org/10.1007/s11766-012-2922-8
- M. Carro, A. Garcia del Amo and J. Soria, Weak type weights and normable Lorentz spaces, Proc. Amer. Math. Soc 124 (1996), 849-857. https://doi.org/10.1090/S0002-9939-96-03214-5
- M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator J. Funct. Anal. 112 (1993), 480-494. https://doi.org/10.1006/jfan.1993.1042
- M. J. Carro and J. Soria, The Hardy-Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. 55 (1997), 146-158. https://doi.org/10.1112/S0024610796004462
- M. J. Carro, J. A. Raposo and J. Soria, Recent developements in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc. 187, 2007.
- P. Drabek, H. P. Heinig and A. Kufner, Higher dimensional Hardy inequality, Internat. Ser. Numer. Math. 123 (1997), 3-16.
- Z. Fu, L. Grafakos, S. Lu, et al., Sharp bounds for m-linear Hardy and Hilbert operators, Houston J. Math. 38 (2012), 225-244.
- D. Fan and F. Zhao, Multilinear fractional Hausdorff operators, Acta Math. Sin., Engl. Ser. 30 (2014), 1407-1421. https://doi.org/10.1007/s10114-014-3552-2
- J. H. Guo, L. J. Sun and F. Y. Zhao, Hausdorff Operators on the Heisenberg Group, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1703-1714 . https://doi.org/10.1007/s10114-015-5109-4
- G. Gao and F. Zhao, Sharp weak bounds for a class of Hausdorff operator, Anal. Math. 41 (2015), 163-173. https://doi.org/10.1007/s10476-015-0204-4
- R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), 249-276.
- W. A. Hurwitz and L. L. Silverman, The consistency and equivalence of certain definitions of summabilities, Trans. Amer. Math. Soc. 18 (1917), 1-20. https://doi.org/10.1090/S0002-9947-1917-1501058-2
-
A. Kaminska, L. Maligranda, Order convexity and concavity of Lorentz spaces
$A_{k,w}$ , 0 < p < TEX>${\infty}$, Studia Math. 160 (2004), 267-286. https://doi.org/10.4064/sm160-3-5 - A. Lerner and E. Li yand, Multidimensional Hausdorff operators on the real Hardy spaces, J. Austral. Math. Soc. 83 (2007), 79-86. https://doi.org/10.1017/S1446788700036399
- H. Li and A. Kaminska, Boundedness and compactness of Hardy operator on Lorentz-type spaces, Math. Nachr., DOI 10.1002/mana.201600049.
- E. Liflyand, Hausdorff operators on Hardy Spaces, Eurasian Math. J. 4 (2013), 101-141.
-
E. Lifiyand and A. Miyachi, Boundedness of the Hausdorff operators in
$H_p$ spaces, 0 < p < 1, Studia Math. 194 (2009), 279-292. https://doi.org/10.4064/sm194-3-4 -
E. Li yand and F. Moricz, The Hausdorff operator is bounded on real
$H_1$ space, Proc. Amer. Math. Soc. 128 (2000), 1391-1396. https://doi.org/10.1090/S0002-9939-99-05159-X - S. Lu, D. Yan and F. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl. 2013, 1-11.
- B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Group UK Limited, London, 1990.
- J. Ruan and D. Fan, Hausdorff operators on the power weighted Hardy spaces, J. Math. Anal. Appl. 433 (2016), 31-48. https://doi.org/10.1016/j.jmaa.2015.07.062
- J. Ruan and D. Fan, Hausdorff operators on the weighted Herz-type Hardy spaces, Math. Inequal. Appl. 19 (2016), 565-587.
-
J. Ruan and D. Fan, Hausdorff type operators on the power weighted Hardy spaces
$H^p_{|\ast|}^{\alpha}$ ($\mathbb{R}^n$ ), Math. Nachr., 2017, 00:1-14. https://doi.org/10.1002/mana.201600257. - J. Ruan, D. Fan and Q. Wu, Weighted Herz space estimates for Hausdorff operators on the Heisenberg group, Banach J. Math. Appl. 11 (2017), 513-535. https://doi.org/10.1215/17358787-2017-0004
- E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. https://doi.org/10.4064/sm-96-2-145-158
- J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser. 49 (1998), 93-103. https://doi.org/10.1093/qmathj/49.1.93
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, 1993.
- S. Thangavelu, Harmonic analysis on the Heisenberg group, Progr. Math., vol. 159, Birkhisxauser, Boston, 1998.
- X. Wu and J. Chen, Best constant for Hausdorff operators on n-dimensional product spaces, Sci. China Math. 57 (2014), 569-578. https://doi.org/10.1007/s11425-013-4725-7
- Q. Wu and Z. Fu, Sharp estimates for the Hardy operator on the Heisenberg group, Front. Math. China 11 (2016), 155-172. https://doi.org/10.1007/s11464-015-0508-5
- F. Zhao, Z. Fu and S. Lu, Endpoint estimates for n-dimensional Hardy operators and their commutators, Sci. China Math. 55 (2012), 1977-1990. https://doi.org/10.1007/s11425-012-4465-0