DOI QR코드

DOI QR Code

Electrochemical Performance of AlF3-Coated LiV3O8 for Aqueous Rechargeable Lithium Ion Batteries

  • Tron, Artur (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Kang, Hyunchul (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Kim, Jinho (Department of Chemistry, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2018.02.19
  • Accepted : 2018.03.05
  • Published : 2018.03.31

Abstract

In aqueous rechargeable lithium ion batteries, $LiV_3O_8$ exhibits obviously enhanced electrochemical performance after $AlF_3$ surface modification owing to improved surface stability to fragile aqueous electrolyte. The cycle life of $LiV_3O_8$ is significantly enhanced by the presence of an $AlF_3$ coating at an optimal content of 1 wt.%. The results of powder X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and galvanostatic charge-discharge measurements confirm that the electrochemical improvement can be attributed mainly to the presence of $AlF_3$ on the surface of $LiV_3O_8$. Furthermore, the $AlF_3$ coating significantly reduces vanadium ion dissolution and surface failure by stabilizing the surface of the $LiV_3O_8$ in an aqueous electrolyte solution. The results suggest that the $AlF_3$ coating can prevent the formation of unfavorable side reaction components and facilitate lithium ion diffusion, leading to reduced surface resistance and improved surface stability compared to bare $LiV_3O_8$ and affording enhanced electrochemical performance in aqueous electrolyte solutions.

Keywords

References

  1. M.R. Palacin, Chem. Soc. Rev., 2009, 38(9), 2565-2575. https://doi.org/10.1039/b820555h
  2. J.B. Goodenough and Y. Kim, Chem. Mater., 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  3. J.M. Tarascon and M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  4. H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim and K. Kang, Chem. Rev., 2014, 114, 11788-11827. https://doi.org/10.1021/cr500232y
  5. X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan and Q. Zhang, Adv. Funct. Mater., 2017, 27(10), 1605989. https://doi.org/10.1002/adfm.201605989
  6. W. Zhou, Y. Li, S. Xin and J.B. Goodenough, ACS Cent. Sci., 2017, 3(1), 52-57. https://doi.org/10.1021/acscentsci.6b00321
  7. W. Li, J.R. Dahn and D.S. Wainwright, Science, 1994, 264(5162), 1115-1118. https://doi.org/10.1126/science.264.5162.1115
  8. G. Wang, L. Fu, N. Zhao, L. Yang, Y. Wu and H. Wu, Angew. Chem. Int. Ed., 2007, 119(1-2), 299-301. https://doi.org/10.1002/ange.200603699
  9. T. Yim, M.S. Kwon, J. Mun and K.T. Lee, Isr. J. Chem., 2015, 55(5), 586-598. https://doi.org/10.1002/ijch.201400181
  10. J. Mun, T. Yim, J.H. Park, J.H. Ryu, S.Y. Lee, Y.G. Kim and S.M. Oh, Sci. Rep., 2014, 4, 6659.
  11. L. Suo, F. Han, X. Fan, H. Liu, K. Xu and C. Wang, J. Mater. Chem. A, 2016, 4(17), 6639-6644. https://doi.org/10.1039/C6TA00451B
  12. R. Ruffo, C. Wessells, R.A. Huggins and Y. Cui, Electrochem. Commun., 2009, 11(2), 247-249. https://doi.org/10.1016/j.elecom.2008.11.015
  13. A. Tron, Y.N. Jo, S.H. Oh, Y.D. Park and J. Mun, ACS Appl. Mater. Interfaces, 2017, 9(14), 12391-12399. https://doi.org/10.1021/acsami.6b16675
  14. A. Tron, Y.D. Park and J. Mun, J. Power Sources, 2016, 325, 360-364. https://doi.org/10.1016/j.jpowsour.2016.06.049
  15. L. Smith and B. Dunn, Science, 2015, 350(6263), 918. https://doi.org/10.1126/science.aad5575
  16. H. Wang, Y. Yu, G. Jin, Y. Tang, S. Liu and D. Sun, Solid State Ionics, 2013, 236, 37-42. https://doi.org/10.1016/j.ssi.2013.01.021
  17. C. Liu, R. Massé, X. Nan and G. Cao, Energy Storage Materials, 2016, 4, 15-58. https://doi.org/10.1016/j.ensm.2016.02.002
  18. P. Mei, X.-L. Wu, H. Xie, L. Sun, Y. Zeng, J. Zhang, L. Tai, Xin Guo, L. Cong, S. Ma, C. Yao and R. Wang, RSC Adv., 2014, 4,(49) 25494-25501. https://doi.org/10.1039/C4RA02269F
  19. J. Liu, L. Yi, L. Liu and P. Peng, Materials Chemistry and Physics, 2015, 161, 211-218. https://doi.org/10.1016/j.matchemphys.2015.05.038
  20. H. Song, Y. Liu, C. Zhang, C. Liu and G. Cao, J. Mater. Chem. A, 2015, 3(7), 3547-3558. https://doi.org/10.1039/C4TA05616G
  21. N.H. Idris, M.M. Rahman, J.-Z. Wanga, Z.-X. Chen and H.-K. Liu, Compos. Sci. Technol., 2011, 71(3), 343-349. https://doi.org/10.1016/j.compscitech.2010.11.025
  22. L.L. Liu, X.J. Wang, Y.S. Zhu, C.L. Hua, Y.P. Wu and R. Holze, J. Power Sources, 2013, 224, 290-294. https://doi.org/10.1016/j.jpowsour.2012.09.100
  23. A. Tron, A. Nosenko, Y.D. Park and J. Mun, Solid State Ionics, 2017, 308, 40-45. https://doi.org/10.1016/j.ssi.2017.05.019
  24. A. Tron, T. Yoon, Y. Park, S. Oh and J. Mun, J. Nanosci. Nanotechnol., 2017, 17(7), 4977-4982. https://doi.org/10.1166/jnn.2017.13737
  25. S. Huang, J.P. Tu, X.M. Jian, Y. Lu, S.J. Shi, X.Y. Zhao, T.Q. Wang, X.L. Wang and C.D. Gu, J. Power Sources, 2014, 245, 698-705.
  26. Y.-K. Sun, M.-J. Lee, C. S. Yoon, J. Hassoun, K. Amine and B. Scrosati, Adv. Mater., 2012, 24(9), 1192-1196. https://doi.org/10.1002/adma.201104106
  27. J. Zheng, M. Gu, J. Xiao, B. J. Polzin, P. Yan, X. Chen, C. Wang and J.-G. Zhang, Chem. Mater., 2014, 26(22), 6320-6327. https://doi.org/10.1021/cm502071h
  28. S.-H. Lee, C. S. Yoon, K. Amine and Y.-K. Sun, J. Power Sources, 2013, 234, 201-207. https://doi.org/10.1016/j.jpowsour.2013.01.045
  29. Y.-K. Sun, S.-W. Cho, S.-T. Myung, K. Amine and J. Prakash, Electrochim. Acta, 2007, 53(2), 1013-1019. https://doi.org/10.1016/j.electacta.2007.08.032
  30. Y.-K. Sun, S.-W. Cho, S.-W. Lee, C. S. Yoon and K. Amine, J. Electrochem. Soc., 2007, 154(3), A168-A172. https://doi.org/10.1149/1.2422890
  31. Q. Zhu, S. Zheng, X. Lu, Y. Wan, Q. Chen, J. Yang, L.-Z. Zhang and Z. Lu, J. Alloys Compd., 2016, 654, 384-391. https://doi.org/10.1016/j.jallcom.2015.09.085
  32. Y. Bai, K. Jiang, S. Sun, Q. Wu, X. Lu and N. Wan, Electrochim. Acta, 2014, 134, 347-354. https://doi.org/10.1016/j.electacta.2014.04.155
  33. S. Verdier, L. El Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan and D. Gonbeau, J. Electrochem. Soc., 2007, 154(12), A1088-A1099. https://doi.org/10.1149/1.2789299
  34. G.J. Wang, Q.T. Qu, B. Wang, Y. Shi, S. Tian, Y.P. Wu and R. Holze, J. Power Sources, 2009, 189(1), 503-506. https://doi.org/10.1016/j.jpowsour.2008.11.006
  35. H. Song, M. Luo and A. Wang, ACS Appl. Mater. Interfaces, 2017, 9(3), 2875-2882. https://doi.org/10.1021/acsami.6b13814
  36. Y. Xu, L Zheng and Y. Xie, Dalton Trans., 2010, 39(44), 10729-10738. https://doi.org/10.1039/c0dt00715c
  37. P. He, J.L. Liu, W.J. Cui, J.Y. Luo and Y.Y. Xia, Electrochim. Acta, 2011, 56(5), 2351-2357. https://doi.org/10.1016/j.electacta.2010.11.027
  38. R. Mo, Y. Du, N. Zhang, D. Rooney and K. Sun, J. Power Sources, 2014, 257, 319-324. https://doi.org/10.1016/j.jpowsour.2014.01.125
  39. Z. Chen, F. Xu, S. Cao, Z. Li, H. Yang, X. Ai and Y. Cao, Small, 2017, 13(18), 1603148. https://doi.org/10.1002/smll.201603148