과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Auli, M., Galley, M., Quirk, C. and Zweig, G. (2013), "Joint language and translation modeling with recurrent neural networks", Emnlp, 13(10) 1044-1054.
- Boden, M. (2001), "A guide to recurrent neural networks and backpropagation", Electr. Eng., 1(2), 1-10.
- Clough, R. W., & Penzien, J. (2013). Dynamics of Structures. Dynamics of Structures, Berkeley, California, USA.
- Ge, Z., Song, Z. and Gao, F. (2013), "Review of recent research on data-based process monitoring", Ind. Eng. Chem. Res., 52(10), 3543-3562. https://doi.org/10.1021/ie302069q
- Gers, F. (2001), "Long short-term memory in recurrent neural networks", Lausanne, 23(66), 102-109.
- Gers, F.A., Schmidhuber, J. and Cummins, F. (2000), "Learning to forget: Continual prediction with LSTM. neural computation", Neural Computation, 12(10), 2451-2471. https://doi.org/10.1162/089976600300015015
- Goel, P., Dedeoglu, G., Roumeliotis, S.I. and Sukhatme, G.S. (2000), "Fault detection and identification in a mobile robot using multiple model estimation and neural network", Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 3(April), 2302-2309.
- Hochreiter, S. and Urgen Schmidhuber, J. (1997), "Long short term memory", Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hwa-Lung, Y. and Chih-Hsin, W. (2010), "Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei", Atmosp. Environ., 44(25), 3053-3065. https://doi.org/10.1016/j.atmosenv.2010.04.030
- Kerschen, G., Boe, P. De, Golinval, J. and Worden, K. (2004), "Sensor validation using principal component analysis", Smart Mater. Struct., 14(1), 36-42. https://doi.org/10.1088/0964-1726/14/1/004
- Li, L. and Zhou, DH.(2004), "Robust fault diagnosis for nonlinear systems based on analytical model", Inform. Control, 33(4), 451-456.
- Ma, X., Tao, Z., Wang, Y., Yu, H. and Wang, Y. (2015), "Long short-term memory neural network for traffic speed prediction using remote microwave sensor data", T. Res. Part C: Emerging Technologies, 54(4), 187-197. https://doi.org/10.1016/j.trc.2015.03.014
- Mansouri, M., Nounou, M., Nounou, H. and Karim, N. (2016), "Kernel PCA-based GLRT for nonlinear fault detection of chemical processes", J. Loss Prevent. Proc., 40(1), 334-347. https://doi.org/10.1016/j.jlp.2016.01.011
- Mehranbod, N., Soroush, M., Piovoso, M. and Ogunnaike, B.A. (2003), "Probabilistic model for sensor fault detection and identification", AICHE J., 49(7), 1787-1802. https://doi.org/10.1002/aic.690490716
- Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y. and Sun, X. (2011), "The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature", Decis. Support Syst., 50(3), 559-569. https://doi.org/10.1016/j.dss.2010.08.006
- Sak, H., Yang, G., Li, B. and Li, W. (2016), "Modeling dependence dynamics of air pollution: Pollution risk simulation and prediction of PM 2.5 levels", Atmos. Environ., 42(1), 4567-4588
- Sheng, C. (2016), Nonlinear Damage Identification of Respiratory Crack in Vehicle-bridge Coupling System, Master. Dissertation, Chongqing University, ChongQing.
- Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 55-67.
- Smarsly, K. and Law, K.H. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Softw., 73(1), 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Yu, D. (1997), "Fault diagnosis for a hydraulic drive system using a parameter-estimation method", Control Eng. Pract., 5(9), 1283-1291. https://doi.org/10.1016/S0967-0661(97)84367-5