DOI QR코드

DOI QR Code

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Zhu, Songye (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
  • 투고 : 2017.11.15
  • 심사 : 2018.02.18
  • 발행 : 2018.03.25

초록

Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.

키워드

과제정보

연구 과제 주관 기관 : GRF, Hong Kong Polytechnic University

참고문헌

  1. Chen, L., Sun, L. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., 15(3), 627-643. https://doi.org/10.12989/sss.2015.15.3.627
  2. Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
  3. Feldman, M. (1994), "Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method'Freevib'", Mech. Syst. Signal Pr., 8(2), 119-127. https://doi.org/10.1006/mssp.1994.1011
  4. Feldman, M. (1997), "Non-linear free vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182
  5. Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
  6. Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)
  7. Gabor, D. (1946), "Theory of communication. Part 1: The analysis of information. Electrical Engineers-Part III: Radio and Communication Engineering", J. Institut., 93(26), 429-441.
  8. Hahn, S.L. (1996), Hilbert transforms in signal processing. Artech House, 305.
  9. Hoang, N. and Fujino, Y. (2009), "Multi-mode control performance of nonlinear dampers in stay cable vibrations", Struct. Control Health Monit., 16(7-8), 860-868. https://doi.org/10.1002/stc.364
  10. Iemura, H. and Pradono, M.H. (2002), "Passive and semi-active seismic response control of a cable-stayed bridge", J. Struct. Control, 9(3), 189-204. https://doi.org/10.1002/stc.12
  11. Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799. https://doi.org/10.1002/stc.345
  12. Johnson, E.A., Christenson, R.E. and Spencer Jr, B.F. (2003), "Semiactive damping of cables with sag", Comput.-Aided Civil Infrastruct. E., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305
  13. Korpel, A. (1982), "Gabor: frequency, time, and memory", Appl. Opt., 21(20), 3624-3632. https://doi.org/10.1364/AO.21.003624
  14. Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Bautechnik, 59(10).
  15. Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037
  16. Krenk, S. and Hogsberg, J.R. (2005), "Damping of cables by a transverse force", J. Eng. Mech., 131(4), 340-348. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(340)
  17. Lee, C.M., Goverdovskiy, V.N. and Temnikov, A.I. (2007), "Design of springs with "negative" stiffness to improve vehicle driver vibration isolation", J. Sound Vib., 302(4), 865-874. https://doi.org/10.1016/j.jsv.2006.12.024
  18. Li, H., Liu, M., Ou, J.P. and Guan, X.C. (2005), "Design and analysis of magnetorheological dampers with intelligent control systems for stay cables", Zhongguo Gonglu Xuebao (China J. Highway Transport), 18(4), 37-41.
  19. Li, H., Liu, M. and Ou, J. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200
  20. Lyons, R. (2000), Quadrature signals: complex, but not complicated. URL: http://www.dspguru.com/info/tutor/quadsig.htm.
  21. Main, J.A. and Jones, N.P. (2002a), "Free vibrations of taut cable with attached damper. I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062)
  22. Main, J.A. and Jones, N.P. (2002b), "Free vibrations of taut cable with attached damper. II: Nonlinear damper", J. Eng. Mech., 128(10), 1072-1081. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1072)
  23. Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
  24. Nayfeh, A.H. (1979), Nonlinear Oscillations, Wiley-Interscience, s.l., 704.
  25. Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magneto-rheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7
  26. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
  27. Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: new structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615
  28. Schreier, P.J. and Scharf, L.L. (2010), Statistical signal processing of complex-valued data: the theory of improper and noncircular signals, Cambridge University Press.
  29. Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
  30. Shi, X., Zhu, S., Li, J.Y. and Spencer Jr, B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044
  31. Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A-Phys., 259, 14-33. https://doi.org/10.1016/j.sna.2017.03.026
  32. Shi, X., Zhu, S. and Spencer Jr, B.F. (2017a), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289
  33. Shi, X., Zhu, S. and Nagarajaiah, S. (2017b), "Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation", J. Bridge Eng., 22(9), 04017054. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001088
  34. Spencer, B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  35. Vakman, D.E. (1998), Signals, oscillations, and waves: a modern approach, Artech House Publishers.
  36. Vainshtein, L.A. and Vakman, D.E. (1983), Frequency Separation in the Theory of Vibration and Waves.Nauka, Moscow, 288
  37. Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007
  38. Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015
  39. Wu, W.J. and Cai, C.S. (2006), "Experimental study of magnetorheological dampers and application to cable vibration control", J. Vib. Control, 12(1), 67-82. https://doi.org/10.1177/1077546306061128
  40. Yamaguchi, H. and Fujino, Y. (1998), "Stayed cable dynamics and its vibration control", Bridge Aerod., 235-254.
  41. Zhou, H.J. and Sun, L.M. (2013), "Damping of stay cable with passive-on magnetorheological dampers: a full-scale test", Int. J. Civil Eng., 11(3), 154-159.
  42. Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809

피인용 문헌

  1. Prototype Test and Numerical Analysis of a Shallow Cable with Novel Viscous Inertial Damper vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5322548