Acknowledgement
Supported by : GRF, Hong Kong Polytechnic University
References
- Chen, L., Sun, L. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., 15(3), 627-643. https://doi.org/10.12989/sss.2015.15.3.627
- Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
- Feldman, M. (1994), "Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method'Freevib'", Mech. Syst. Signal Pr., 8(2), 119-127. https://doi.org/10.1006/mssp.1994.1011
- Feldman, M. (1997), "Non-linear free vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182
- Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
- Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)
- Gabor, D. (1946), "Theory of communication. Part 1: The analysis of information. Electrical Engineers-Part III: Radio and Communication Engineering", J. Institut., 93(26), 429-441.
- Hahn, S.L. (1996), Hilbert transforms in signal processing. Artech House, 305.
- Hoang, N. and Fujino, Y. (2009), "Multi-mode control performance of nonlinear dampers in stay cable vibrations", Struct. Control Health Monit., 16(7-8), 860-868. https://doi.org/10.1002/stc.364
- Iemura, H. and Pradono, M.H. (2002), "Passive and semi-active seismic response control of a cable-stayed bridge", J. Struct. Control, 9(3), 189-204. https://doi.org/10.1002/stc.12
- Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799. https://doi.org/10.1002/stc.345
- Johnson, E.A., Christenson, R.E. and Spencer Jr, B.F. (2003), "Semiactive damping of cables with sag", Comput.-Aided Civil Infrastruct. E., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305
- Korpel, A. (1982), "Gabor: frequency, time, and memory", Appl. Opt., 21(20), 3624-3632. https://doi.org/10.1364/AO.21.003624
- Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Bautechnik, 59(10).
- Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037
- Krenk, S. and Hogsberg, J.R. (2005), "Damping of cables by a transverse force", J. Eng. Mech., 131(4), 340-348. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(340)
- Lee, C.M., Goverdovskiy, V.N. and Temnikov, A.I. (2007), "Design of springs with "negative" stiffness to improve vehicle driver vibration isolation", J. Sound Vib., 302(4), 865-874. https://doi.org/10.1016/j.jsv.2006.12.024
- Li, H., Liu, M., Ou, J.P. and Guan, X.C. (2005), "Design and analysis of magnetorheological dampers with intelligent control systems for stay cables", Zhongguo Gonglu Xuebao (China J. Highway Transport), 18(4), 37-41.
- Li, H., Liu, M. and Ou, J. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200
- Lyons, R. (2000), Quadrature signals: complex, but not complicated. URL: http://www.dspguru.com/info/tutor/quadsig.htm.
- Main, J.A. and Jones, N.P. (2002a), "Free vibrations of taut cable with attached damper. I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062)
- Main, J.A. and Jones, N.P. (2002b), "Free vibrations of taut cable with attached damper. II: Nonlinear damper", J. Eng. Mech., 128(10), 1072-1081. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1072)
- Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
- Nayfeh, A.H. (1979), Nonlinear Oscillations, Wiley-Interscience, s.l., 704.
- Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magneto-rheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7
- Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
- Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: new structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615
- Schreier, P.J. and Scharf, L.L. (2010), Statistical signal processing of complex-valued data: the theory of improper and noncircular signals, Cambridge University Press.
- Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
- Shi, X., Zhu, S., Li, J.Y. and Spencer Jr, B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044
- Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A-Phys., 259, 14-33. https://doi.org/10.1016/j.sna.2017.03.026
- Shi, X., Zhu, S. and Spencer Jr, B.F. (2017a), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289
- Shi, X., Zhu, S. and Nagarajaiah, S. (2017b), "Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation", J. Bridge Eng., 22(9), 04017054. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001088
- Spencer, B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Vakman, D.E. (1998), Signals, oscillations, and waves: a modern approach, Artech House Publishers.
- Vainshtein, L.A. and Vakman, D.E. (1983), Frequency Separation in the Theory of Vibration and Waves.Nauka, Moscow, 288
- Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007
- Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015
- Wu, W.J. and Cai, C.S. (2006), "Experimental study of magnetorheological dampers and application to cable vibration control", J. Vib. Control, 12(1), 67-82. https://doi.org/10.1177/1077546306061128
- Yamaguchi, H. and Fujino, Y. (1998), "Stayed cable dynamics and its vibration control", Bridge Aerod., 235-254.
- Zhou, H.J. and Sun, L.M. (2013), "Damping of stay cable with passive-on magnetorheological dampers: a full-scale test", Int. J. Civil Eng., 11(3), 154-159.
- Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809
Cited by
- Prototype Test and Numerical Analysis of a Shallow Cable with Novel Viscous Inertial Damper vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5322548