DOI QR코드

DOI QR Code

Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim

  • Li, Zi-Jiang (Tianjin Key Laboratory of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Chen, Shilin (Tianjin Key Laboratory of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Yang, Xiang-Hao (Tianjin Key Laboratory of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Wang, Rui (Tianjin Key Laboratory of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest & Environment Sciences, Kangwon National University) ;
  • Wu, Lei (Institute of Applied Chemistry, Jiangxi Academy of Sciences) ;
  • Si, Chuan-Ling (Tianjin Key Laboratory of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest & Environment Sciences, Kangwon National University)
  • Received : 2017.11.08
  • Accepted : 2017.12.22
  • Published : 2018.03.25

Abstract

Juglans mandshurica is a fast growing hard species, which is a tree in family of Juglandaceae and has a wide distribution in China, Korea and eastern Russia. Plant materials from J. mandshurica have extensively been used in folk medicines to prevent or cure gastric, esophageal, lung and cardiac cancer. As one chain of our searching for anticomplementary agents from natural sources, two epimeric ellagitannins, [2,3-O-4,4',5,5',6,6',-hexahydroxydiphenoyl (HHDP))-(${\alpha},{\beta}$)-D-glucose] (I) and pedunculagin (II) were purified from 70% acetone extracts of the stem barks of J. mandshurica by Thin Layer Chromatography and Sephadex LH-20 column chromatography approaches. The chemical structures of the isolated compounds were characterized by MS, NMR, and a careful comparation with published literatures. The epimeric ellagitannins I and II exhibited inhibitory properties against a classical pathway of complementary system with 50 % inhibitory concentrations ($IC_{50}$) values of 65.3 and $47.7{\mu}M$, respectively, comparing with riliroside ($IC_{50}=104{\mu}M$) and rosmarinic acid ($IC_{50}=182{\mu}M$), which were used as positive controls. Thus, the work indicated both the two secondary metabolites possess excellent inhibitory activity and might be developed as potential anticomplementary chemicals.

Keywords

References

  1. Bi, D.D., Zhao, Y.C., Jiang, R., Wang, Y., Tian, Y.X., Chen, X.Y., Bai, S.J., She, G.M. 2016. Phytochemistry, bioactivity and potential impact on health of Juglans: the original plant of walnut. Natural Product Communications 11(6): 869-880.
  2. Cimanga, K., Bruyne, T.D., Lasure, A., Poel, B.V., Pieters, L., Berghe, D.V., Vlietinck, A., Kambu, K., Tona, L. 1995. In vitro anticomplementary activity of constituents from Morinda morindoides. Journal of Natural Products 8(3): 372-378.
  3. Imakura, Y., Kobayashi, S., Mima, A. 1985. Bitter phenyl propanoid glycosides from Campsis chinensis. Phytochemistry 24(1): 139-146. https://doi.org/10.1016/S0031-9422(00)80823-7
  4. Jung, K.Y., Oh, S.R., Park, S.H., Lee, I.S., Ahn, K.S., Lee, J.J., Lee, H.K. 1998. Anti-complement activity of tiliroside from the flower buds of Magnolia fargesii. Biological & Pharmaceutical Bulletin 21(10): 1077-1078. https://doi.org/10.1248/bpb.21.1077
  5. Kim, T.W. 1994. The Woody Plants of Korea. Kyohak Press: Seoul, Korea. pp.58-59.
  6. Li, G., Xu, M.L., Choi, H.G. L, S.H., Jahng, Y.D., Lee, C.S., Moon, D.C., Woo, M.H., Son, J.K. 2003. Four new diarylheptanoids from the roots of Juglans mandshurica. Chemical & Pharmaceutical Bulletin 51(3): 262-264. https://doi.org/10.1248/cpb.51.262
  7. Min, B.S., Nakamura, N., Miyashiro, H., Kim, Y.H., Hattori, M. 2000. Inhibition of human immunodeficiency virus type 1 reverse transcriptase and ribonuclease H activities by constituents of Juglans mandshurica. Chemical & Pharmaceutical Bulletin 48(2): 194-200. https://doi.org/10.1248/cpb.48.194
  8. Min, B.S., Lee, S.Y., Kim, J.H., Lee, J.K., Kim, T.J., Kim, D.H., Kim, Y.H., Joung, H., Lee, H.K., Nakamura, N., Miyashiro, H., Hattori, M. 2003. Anti-complement activity of constituents from the stem-bark of Juglans mandshurica. Biological & Pharmaceutical Bulletin 26(7): 1042-1044. https://doi.org/10.1248/bpb.26.1042
  9. Oh, S.R., Kinjo, J., Shii, Y., Ikeda, T., Ahn, K.S., Kim, J.H., Lee, H.K. 2000. Effects of triterpenoids from Pueraria lobata on immunohemolysis: ${\beta}$-Dglucuronic acid plays an active role in anticomplementary activity in vitro. Planta Medica 66(6): 506-510. https://doi.org/10.1055/s-2000-8614
  10. Park, S.H., Oh, S.R., Jung, K.Y., Lee, I.S., Ahn, K.S., Kim, J.H., Kim, Y.S., Lee, J.J., Lee, H.K. 1999. Acylated flavonol glycosides with anti-complement activity from Persicaria lapathifolia. Chemical & Pharmaceutical Bulletin 47(10): 1484-14686. https://doi.org/10.1248/cpb.47.1484
  11. Park, S., Kim, N., Yoo, G.J., Kim, S.N., Kwon, H.J., Jung, K.W., Oh, D.C., Lee, Y.H., Kim, S.H. 2017. Phenolics and neolignans isolated from the fruits of Juglans mandshurica Maxim. and their effects on lipolysis in adipocytes. Phytochemistry 137(8): 87-93. https://doi.org/10.1016/j.phytochem.2017.01.019
  12. Seikel, M.K., Hillis, W.E. 1970. Hydrolysable tannins of Eucalyptus delegatensis wood. Phytochemistry 9(5): 1115-1128. https://doi.org/10.1016/S0031-9422(00)85235-8
  13. Si, C.L., Gao, Y., Wu, L., Liu, R., Wang, G.H., Dai, L., Li, X.H., Hong, Y.M. 2017. Isolation and characterization of triterpenoids from the stem barks of Pinus massoniana. Holzforschung 71(9): 697-703.
  14. Tanaka, T., Tachibana, H., Nonaka, G., Nishioka, I., Hsu, F.L., Kohda, H., Tanaka, O. 1993. Tannins and related compounds. CXXII. New dimeric, trimeric and tetrameric ellagitannins, lambertianins A-D, from Rubus lambertianus Seringe. Chemical & Pharmaceutical Bulletin 41(7): 1214-1220. https://doi.org/10.1248/cpb.41.1214
  15. Tsujita, T., Matsuo, Y., Saito, Y., Tanaka, T. 2017. Enzymatic oxidation of ellagitannin and a new ellagitannin metabolite from Camellia japonica leaves. Tetrahedron 73(5): 500-507. https://doi.org/10.1016/j.tet.2016.12.027
  16. Wang, T.M., Liu, J., Yi, T., Zhai, Y.J. Zhang, H., Chen, H.B., Cai, S.Q., Kang, T.G., Zhao, Z.Z. 2017. Multiconstituent identification in root, branch, and leaf extracts of Juglans mandshurica using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Separation Science 40(17): 3340-3452.
  17. Yamada, H., Ohtani, K., Kiyohara, H., Cyong, J.C., Otsuka, Y., Ueno, Y., Omura, S. 1985. Purification and chemical properties of anti-complementary polysaccharide from the leaves of Artemisia princeps. Planta Medica 51(2): 121-125. https://doi.org/10.1055/s-2007-969424