DOI QR코드

DOI QR Code

N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition

  • 황라현 (충남대학교 에너지과학기술대학원) ;
  • 박지혜 (충남대학교 에너지과학기술대학원) ;
  • 백정훈 (한국에너지기술연구원) ;
  • 임효빈 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Hwang, Ra Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Ji Hye (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Baek, Jeong Hun (Korea Institute of Energy Research) ;
  • Im, Hyo Been (Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 투고 : 2017.07.26
  • 심사 : 2017.08.28
  • 발행 : 2018.03.30

초록

$N_2O$ 촉매 분해 반응을 위한 $Co_3O_4$ 촉매는 공침법을 이용하여 제조하였으며, 조촉매로서 Ce 및 Zr의 양을 (Ce 또는 Zr)/Co = 0.05의 몰비로 고정하여 제조하였다. 또한 K가 촉매에 미치는 영향을 조사하기 위해 1 wt%의 $K_2CO_3$를 함침하여 촉매를 제조하였다. 제조된 촉매의 특성은 BET, SEM, XRD, $H_2-TPR$, XPS를 통해 분석하였다. $Co_3O_4$ 촉매는 스피넬 결정상을 나타냈으며, 조촉매의 첨가는 입자 크기와 결정 크기를 감소시켜 비표면적을 증가시키는 것으로 나타났다. K의 도핑은 촉매 활성 물질인 Co의 활성 종인 $Co^{2+}$의 농도를 증가시켜 촉매 활성을 향상시키는 것으로 확인되었다. $N_2O$ 분해 반응 테스트는 $GHSV=45,000h^{-1}$, $250{\sim}375^{\circ}C$에서 수행되었으며 $Co_3O_4$ 촉매에 조촉매를 첨가하였을 때도 반응성이 증가하였지만, K를 함침하면 활성이 더욱 크게 증가하는 것으로 나타났다. K의 도핑이 활성 종인 $Co^{2+}$의 농도를 증가시키며, 환원온도를 낮춰 주어 활성에 큰 영향을 주는 것으로 확인하였다.

$Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.

키워드

참고문헌

  1. Chang, K. S., "Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide," J. Korean Ind. Eng. Chem., 19(1), 17-26 (2008).
  2. Cho, S. S., et al., "$N_2O$ Reduction Technologies and Current Status of Related CDM Projects," KIC News, 12(3), 1-13 (2009).
  3. Tanaka, S. I., et al., "Mechanism of $O_2$ Desorption during $N_2O$ Decomposition on an Oxidized Rh/USY Catalyst," J. Catal., 200(2), 203-208 (2001). https://doi.org/10.1006/jcat.2001.3197
  4. Galle, M., et al., "Thermal $N_2O$ Decomposition in Regenerative Heat Exchanger Reactors," Chem. Eng. Sci., 56(4), 1587-1595 (2001). https://doi.org/10.1016/S0009-2509(00)00386-9
  5. Perez-Ramirez, J., et al., "Formation and Control of $N_2O$ in Nitric Acid Production: Where do we Stand Today?," Appl. Catal., B, 44(2), 117-151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  6. Kannan, S., and Swamy, C. S., "Catalytic Decomposition of Nitrous Oxide over Calcined Cobalt Aluminum Hydrotalcites," Catal. Today, 53(4), 725-737 (1999). https://doi.org/10.1016/S0920-5861(99)00159-5
  7. Yan, L., et al., "Catalytic Decomposition of $N_2O$ over $M_xCo_{1-x}$ $Co_2O_4$ (M=Ni, Mg) Spinel Oxides," Appl. Catal., B, 45(2), 85-90 (2003). https://doi.org/10.1016/S0926-3373(03)00174-7
  8. Abu-Zied, B. M., et al., "Nitrous Oxide Decomposition over Transition Metal Exchanged ZSM-5 Zeolites Prepared by the Solid-State Ion-Exchange Method," Appl. Catal., B, 84(1), 277-288 (2008). https://doi.org/10.1016/j.apcatb.2008.04.004
  9. Curdaneli, P. E., and Ozkar, S., "Ruthenium(III) Ion-Exchanged Zeolite Y as Highly Active and Reusable Catalyst in Decomposition of Nitrous Oxide to Sole Nitrogen and Oxygen," Microporous Mesoporous Mater., 196, 51-58 (2014). https://doi.org/10.1016/j.micromeso.2014.04.052
  10. Asano, K., et al., "Potassium-doped $Co_3O_4$ Catalyst for Direct Decomposition of $N_2O$," Appl. Catal., B, 78(3), 242-249 (2008). https://doi.org/10.1016/j.apcatb.2007.09.016
  11. Hu, H., et al., "In Situ DRIFTs Investigation of the Low-Temperature Reaction Mechanism over Mn-Doped $Co_3O_4$ for the Selective Catalytic Reduction of $NO_x$ with $NH_3$," J. Phys. Chem. C, 119(40), 22924-22933 (2015). https://doi.org/10.1021/acs.jpcc.5b06057
  12. Xue, L., et al., "Catalytic Decomposition of $N_2O$ over $CeO_2$ Promoted $Co_3O_4$ Spinel Catalyst," Appl. Catal., B, 75(3), 167-174 (2007). https://doi.org/10.1016/j.apcatb.2007.04.013
  13. Maniak, G., et al., "Rationales for the Selection of the Best Precursor for Potassium Doping of Cobalt Spinel Based $deN_2O$ Catalyst," Appl. Catal., B, 136, 302-307 (2013).
  14. Trovarelli, A. "Catalytic Properties of Ceria and $CeO_2$-Containing Materials," Catal. Rev. -Sci. Eng., 38(4), 439-520 (1996). https://doi.org/10.1080/01614949608006464
  15. Xue, L., et al., "Promotion Effect of Residual K on the Decomposition of $N_2O$ over Cobalt-Cerium Mixed Oxide Catalyst," Catal. Today, 126(3), 449-455 (2007). https://doi.org/10.1016/j.cattod.2007.06.021
  16. Wang, R., et al., "Improvement of Preferential CO Oxidation Activity over CuO/$Co_3O_4$-$CeO_2$ Catalysts: Effect of Co/Ce Ratio," J. Chil. Chem. Soc., 59(4), 2710-2716 (2014). https://doi.org/10.4067/S0717-97072014000400017
  17. Xue, L., et al., "Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt-Cerium Composite Oxide Catalysts for $N_2O$ Decomposition," Environ. Sci. Technol., 43(3), 890-895 (2009). https://doi.org/10.1021/es801867y
  18. Haneda, M., et al., "Alkali Metal-Doped Cobalt Oxide Catalysts for NO Decomposition," Appl. Catal., B, 46(3), 473-482 (2003). https://doi.org/10.1016/S0926-3373(03)00287-X
  19. Yoshino, H., et al., "Optimized Synthesis Method for K/$Co_3O_4$ Catalyst Towards Direct Decomposition of $N_2O$," J. Mater. Sci., 46(3), 797-805 (2011). https://doi.org/10.1007/s10853-010-4818-4