DOI QR코드

DOI QR Code

Effect of Co and Ni Catalyst on the Preparation of Porous Graphite Using Magadiite Template

Magadiite 주형을 이용한 다공성 흑연제조에 미치는 Co와 Ni 촉매 효과

  • Choi, Seok-Hyon (MONOLITH Co., Ltd) ;
  • Kwon, Oh-Yun (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • Received : 2018.01.26
  • Accepted : 2018.02.27
  • Published : 2018.03.27

Abstract

Porous graphites were synthesized by removing the template in HF after cabothermal conversion for 3 h at $900^{\circ}C$, accompanied by intercalations of pyrolyzed fuel oil (PFO) in the interlayer of Co or Ni loaded magadiite. The X-ray powder diffraction pattern of the porous graphites exhibited 00l reflections corresponding to a basal spacing of 0.7 nm. The particle morphology of the porous graphites was composed of carbon plates intergrown to form spherical nodules resembling rosettes like a magadiite template. TEM shows that the cross section of the porous graphites is composed of layers with very regular spaces. In particular, crystallization of the porous graphite was dependent on the content of Co or Ni loaded in the interlayer. The porous graphite had a surface area of $328-477m^2/g$. This indicates that metals such as Co and Ni act as catalysts that accelerate graphite formation.

Keywords

References

  1. H. M. Cheng, Q. H. Yang and C. Liu, Carbon, 39, 1447 (2001). https://doi.org/10.1016/S0008-6223(00)00306-7
  2. E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. K. Bose and S. Desilets, Appl. Phys. A: Mater. Sci. Process. 78, 961 (2004). https://doi.org/10.1007/s00339-003-2415-y
  3. J. Lee, S. Han and T. Hyeon, J. Korean Ind. Eng. Chem., 15, 483 (2004).
  4. M. Inagaki, K. Kaneko and T. Nishizawa, Carbon, 42, 1401 (2004). https://doi.org/10.1016/j.carbon.2004.02.032
  5. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 412, 169 (2001). https://doi.org/10.1038/35084046
  6. G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee and C. S. Kim, Int. J. Hydrogen Energy, 28, 645 (2003). https://doi.org/10.1016/S0360-3199(02)00140-4
  7. N. M. Rodriguez, A. Chambers, R. Terry and K. Baker, Langmuir, 11, 3862 (1995). https://doi.org/10.1021/la00010a042
  8. O. Y. Kwon and K. W. Park, Bull. Korean Chem. Soc., 24, 1561(2003). https://doi.org/10.5012/bkcs.2003.24.11.1561
  9. E. I. Jeong, S. Y. Jeong, and O. Y. Kwon, J. Korean Ind. Eng. Chem., 16, 68 (2005).
  10. S. H. Choi, S. Y. Jeong, S. G. Oh and O. Y. Kwon, J. Korean Ind. Eng. Chem., 16, 408 (2005).
  11. S. H. Choi, S. Y. Jeong, J. Y. Kim and O. Y. Kwon, J. Korean Ind. Eng. Chem., 16, 576 (2005)
  12. O. Y. Kwon, S. Y. Jeong, J. K. Suh and J. M. Lee, Bull. Korean Chem. Soc., 16, 737 (1995).
  13. O. Y. Kwon and K. W. Park, Bull. Korean Chem. Soc., 25, 25 (2004). https://doi.org/10.5012/bkcs.2004.25.1.025
  14. O. Y. Kwon, S. Y. Jeong, J. K. Seo, B. H. Ryu and J. M. Lee, J. Colloid Interface Sci., 177, 677 (1996). https://doi.org/10.1006/jcis.1996.0083
  15. O. Y. Kwon and K. W. Park, J. Korean. Ind. Eng. Chem., 7, 44 (2001).
  16. E. I. Jeong, S. Y. Jeong and O. Y. Kwon, J. Korean Ind. Eng. Chem., 14, 973 (2003).
  17. G. Lagaly and K. Beneke, Am. Mineral., 60, 650 (1975).
  18. K. Beneke and G. Lagaly, Am. Mineral., 68, 818 (1983).