DOI QR코드

DOI QR Code

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao (School of Civil Engineering / Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Wang, Zhe (School of Civil Engineering / Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Wang, Tao (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, CEA) ;
  • Wang, Xiao-Ting (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, CEA)
  • Received : 2017.11.29
  • Accepted : 2018.01.20
  • Published : 2018.03.25

Abstract

This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Keywords

Acknowledgement

Supported by : Institute of Engineering Mechanics, CEA, National Natural Science Foundation of China

References

  1. AASHTO (2004), LRFD bridge design specifications; 3rd Edition, Washington, D.C., USA.
  2. ACI Committee 318 (2008), Building code requirements for structural concrete (ACI 318-08) and commentary (ACI 318R-08); American Concrete Institute, Farmington Hills, MI, USA.
  3. ACI Committee 349 (2001), Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-01) and Commentary (ACI 349R-01); American Concrete Institute, Farmington Hills, MI, USA.
  4. An, L. and Cederwall, K. (1996), "Push-out tests on studs in high strength and normal strength concrete", J. Constr. Steel Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H
  5. ANSI/AISC. AISC 360-10 (2010), Specification for structural steel buildings; American National Standards Institute, Chicago, IL, USA.
  6. CEB-FIP (1993), CEB-FIP model code 1990; Comite Euro-International Du Beton, Redwood Books, Trowbridge, Wiltshire, UK.
  7. Cook, R.A., Collins, D.M., Klingner, R.E. and Polyzois, D. (1992), "Load-deflection behaviour of cast-in-place and retrofit concrete anchors", ACI Struct. J., 89(6), 639-649.
  8. Eligehausen, R. and Balogh, T. (1995), "Behaviour of fasteners loaded in tension in cracked reinforced concrete", ACI Struct. J., 92(3), 365-379.
  9. Eurocode 4 (2004), Design of composite steel and concrete structures-Part 1.1: General rules and rules for buildings, BS EN 1994-1-1:2004; Brussels, Belgium.
  10. Fuchs, W., Eligehausen, R. and Breen, J.E. (1995), "Concrete capacity design (CCD) approach for fastening to concrete", ACI Struct. J., 92(1), 73-94.
  11. Hamad, B.S., Haidar, Y.A. and Harajli, M.H. (2011), "Effect of steel fibers on bond strength of hooked bars in normal-strength concrete", ACI Struct. J., 108(1), 42-50.
  12. Han, Q.H., Xu, J., Xing, Y. and Li, Z.L. (2015), "Static push-out test on steel and recycled tire rubber-filled concrete composite beams", Steel Compos. Struct., Int. J., 19(4), 843-860. https://doi.org/10.12989/scs.2015.19.4.843
  13. Han, Q.H., Wang, Y.H. and Xu, J. (2017), "Numerical analysis on shear stud in push-out test with crumb rubber concrete", J. Constr. Steel Res, 130, 148-158. https://doi.org/10.1016/j.jcsr.2016.12.008
  14. Hu, H.S., Nie, J.G. and Eatherton, M.R. (2014), "Deformation capacity of concrete-filled steel plate composite shear walls", J. Constr. Steel Res., 103, 148-158.
  15. Ji, X., Sun, Y., Qian, J. and Lu, X. (2015), "Seismic behaviour and modeling of steel reinforced concrete (SRC) walls", Earthq. Eng. Struct. Dyn., 44(6), 955-972. https://doi.org/10.1002/eqe.2494
  16. Ji, X., Cheng, X., Jia, X. and Varma, A.H. (2017), "Cyclic in-plane shear behaviour of double skin composite shear walls in highrise buildings", J. Struct. Eng. ASCE, 143(6), 04017025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001749
  17. Kurt, E.G., Varma, A.H., Booth, P. and Whittaker, A.S. (2016), "In-plane behaviour and design of rectangular SC wall piers without boundary elements", J. Struct. Eng. ASCE, 142(6), 04016026. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001481
  18. Leekitwattana, M., Boyd, S.W. and Shenoi, R.A. (2011), "Evaluation of the transverse shear stiffness of a steel bidirectional corrugated-strip-core sandwich beam", J. Constr. Steel Res., 67(2), 248-254. https://doi.org/10.1016/j.jcsr.2010.07.010
  19. Lynch, T.J. and Burdette, E.G. (1991), "Some design considerations for anchors in concrete", ACI Struct. J., 88(1), 91-97.
  20. Malek, N., Machida, A., Mutsuyoshi, H. and Makabe, T. (1993), "Steel-concrete sandwich members without shear reinforcement", Transact. Japan Concrete Inst., 15(2), 1279-1284.
  21. Narayanan, R., Bowerman, H.G., Naji, F.J., Roberts, T.M. and Helou, A.J. (1997), "Application guidelines for Steel-Concrete-Steel sandwich construction-1: Immerses Tube Tunnels", SCI publication 132, The Steel Construction Institute, Ascot, Berkshire, UK.
  22. Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y. and Liu, F.J. (2013), "Experimental study on seismic behavior of highstrength concrete filled double-steel-plate composite wall", J. Constr. Steel Res., 88, 206-219. https://doi.org/10.1016/j.jcsr.2013.05.001
  23. Oehlers, D.J. and Johnson, R.P. (1987), "The strength of stud shear connections in composite beams", Struct. Engr., 65B(2), 44-48.
  24. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-64.
  25. Roberts, T.M. and Dogan, O. (1998), "Fatigue of welded stud shear connectors in steelconcrete-steel sandwich beams", J. Constr. Steel Res., 45(3), 301-320. https://doi.org/10.1016/S0143-974X(97)00070-9
  26. Sener, K. and Varma, A.H. (2014), "Steel-plate composite SC walls: Experimental database and design for out-of-plane shear", J. Constr. Steel Res., 100, 197-210. https://doi.org/10.1016/j.jcsr.2014.04.014
  27. Shanmugam, N.E., Kumar, G. and Thevendran, V. (2002), "Finite element modelling of double skin composite slabs", Finite Elem. Anal. Des., 38(7), 579-599. https://doi.org/10.1016/S0168-874X(01)00093-2
  28. Slobodan, R. and Dragoljub, D. (2002), "Static strength of the shear conectors in steel-concrete composite beams-regulations and research analysis", Architect. Civil Eng., 2(4), 251-259. https://doi.org/10.2298/FUACE0204251R
  29. Tomlinson, M., Chapman, M., Wright, H.D., Tomlinson, A. and Jefferson, A.D. (1990), "Shell Composite Construction for Shallow Draft Immersed Tube Tunnels", Proceedings of the ICE International Conference on Immersed Tube Tunnel Techniques, Manchester, Thomas Telford, London, UK, pp. 209-220.
  30. Viest, I.M. (1957), "Investigation of Stud Shear Connectors for Composite Concrete and Steel T-Beams", J. Am. Concrete Inst., 52(4), 875-892.
  31. Wright, H.D., Oduyemi, T.O.S. and Evans, H.R. (1991), "The experimental behaviour of double skin composite elements", J. Constr. Steel Res., 19(2), 97-110. https://doi.org/10.1016/0143-974X(91)90036-Z
  32. Xie, M. and Chapman, J.C. (2005), "Static and fatigue tensile strength of friction-welded bar-plate connections embedded in concrete", J. Constr. Steel Res., 61(5), 651-673. https://doi.org/10.1016/j.jcsr.2004.10.008
  33. Xue, W.C., Ding, M., Wang, H. and Luo, Z.W. (2008), "Static behaviour and theoretical model of stud shear connectors", J. Bridge Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623)
  34. Yan, J.B., Liew, J.Y.R. and Zhang, M.H. (2014a), "Tensile resistance of J-hook connectors in steel-concrete-steel sandwich composite structure", J. Constr. Steel Res., 100, 146-162. https://doi.org/10.1016/j.jcsr.2014.04.023
  35. Yan, J.B., Liew, J.Y.R., Zhang, M.H. and Wang, J.Y. (2014b), "Ultimate strength behaviour of steel-concrete-steel sandwich composite structures, Part 1: Experimental and analytical Study", Steel Compos. Struct., Int. J., 17(6), 907-927. https://doi.org/10.12989/scs.2014.17.6.907
  36. Yan, J.B., Liew, J.Y.R. and Zhang, M.H. (2015), "Shear-tension interaction strength of J-hook connectors in steel-concrete-steel sandwich structure", Adv. Steel Constr., 11(1), 72-93.
  37. Yan, J.B., Liu, X.M., Liew, J.Y.R., Qian, X. and Zhang, M.H. (2016), "Steel-concrete-steel sandwich system in Arctic offshore structures: Materials, experiments, and design", Mater. Des., 91, 111-121. https://doi.org/10.1016/j.matdes.2015.11.084
  38. Zamora, N.A., Cook, R.A., Konz, R.C. and Consolazio, G.R. (2003), "Behaviour and design of single, headed and unheaded, grouted anchors under tensile load", ACI Struct. J., 100(2), 222-230.
  39. Zhang, K., Varma, A.H., Malushte, S. and Gallocher, S. (2014), "Effects of shear connectors on the local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239.

Cited by

  1. Compressive behavior of rectangular sandwich composite wall with different truss spacings vol.34, pp.6, 2018, https://doi.org/10.12989/scs.2020.34.6.783
  2. Structural behavior of sandwich composite wall with truss connectors under compression vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.159
  3. Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405
  4. Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.741
  5. Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads vol.38, pp.4, 2018, https://doi.org/10.12989/scs.2021.38.4.463
  6. Structural performance of steel-concrete composite bridges utilising innovative blind bolt shear connectors vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.581