References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704.
- Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
- Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Problems Eng.
- Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., Int. J., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955
- Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065. DOI: 10.1142/S0219455414500655
- Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. DOI: 10.1142/S1758825115500477
- Akbas, S.D. (2015c), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., Int. J., 54(3), 433-451.
- Akbas, S.D. (2017a), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589.
- Akbas, S.D. (2017b), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155.
- Akbas, S.D. (2017c), "Static, Vibration, and Buckling Analysis of Nanobeams", Nanomechanics, InTech.
- Akbas, S.D. and Kocaturk, T. (2011), "Post-buckling analysis of a simply supported beam under uniform thermal loading", Sci. Res. Essays, 6(5), 1135-1142.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., Int. J., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397
- Akgoz, B. and Civalek, O . (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
- Asadi, H. and Aghdam, M.M. (2014), "Large amplitude vibration and post-buckling analysis of variable cross-section composite beams on nonlinear elastic foundation", Int. J. Mech. Sci., 79, 47-55. https://doi.org/10.1016/j.ijmecsci.2013.11.017
- Almitani, K.H. (2017), "Buckling behaviors of symmetric and antisymmetric functionally graded beams", J. Appl. Computat. Mech., 4(2), 115-124.
- Baghani, M., Jafari-Talookolaei, R.A. and Salarieh, H. (2011), "Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation", Appl. Math. Model., 35(1), 130-138. https://doi.org/10.1016/j.apm.2010.05.012
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017a), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702.
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017b), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech, Int. J., 55(1), 47-64. https://doi.org/10.12989/sem.2015.55.1.047
- Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
- Bessaim, A., Ahmed Houari, M.S., Abdelmoumen Anis, B., Kaci, A., Tounsi, A. and Bedia, A. (2017), "Buckling analysis of embedded nanosize FG beams based on a refined hyperbolic shear deformation theory", J. Appl. Computat. Mech. DOI: 10.22055/JACM.2017.22996.1146
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422.
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Bedia, E.A.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Methods, 11(6),1350082. https://doi.org/10.1142/S0219876213500825
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Cardoso, J.B., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin-Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Chang, X.P., Zhang, X.D. and Liu, Q.Y. (2011), "Geometrically Nonlinear Analysis of Cross-ply Laminated Composite Beams Subjected to Uniform Temperature Rise", In: Adv. Mater. Res., 335, 527-530.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- Civalek, O . (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179.
- Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., Int. J., 51(1), 111-130.
- Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
- Di Sciuva, M. and Icardi, U. (1995), "Large deflection of adaptive multilayered Timoshenko beams", Compos. Struct., 31(1), 49-60. https://doi.org/10.1016/0263-8223(95)00001-1
- Donthireddy, P. and Chandrashekhara, K. (1997), "Nonlinear thermomechanical analysis of laminated composite beams", Adv. Compos. Mater., 6(2), 153-166. https://doi.org/10.1163/156855197X00049
- Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), 172. https://doi.org/10.1140/epjp/i2017-11400-6
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
- Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006
- Felippa, C.A. (2017), "Notes on Nonlinear Finite Element Methods", URL: http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf
- Fouda, N., El-midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Computat. Mech., 3(4), 274-282.
- Fraternali, F. and Bilotti, G. (1997), "Nonlinear elastic stress analysis in curved composite beams", Comput. Struct., 62(5), 837-859. https://doi.org/10.1016/S0045-7949(96)00301-X
- Ganapathi, M., Patel, B.P., Saravanan, J. and Touratier, M. (1998), "Application of spline element for large-amplitude free vibrations of laminated orthotropic straight/curved beams", Compos. Part B: Eng., 29(1), 1-8. https://doi.org/10.1016/S1359-8368(97)00025-5
- Ghazavi, A. and Gordaninejad, F. (1989), "Nonlinear bending of thick beams laminated from bimodular composite materials", Compos. Sci. Technol., 36(4), 289-298. https://doi.org/10.1016/0266-3538(89)90043-2
- Gunda, J.B. and Rao, G.V. (2013), "Post-buckling analysis of composite beams: A simple intuitive formulation", Sadhana, 38(3), 447-459. https://doi.org/10.1007/s12046-013-0144-2
- Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010), "Post-buckling analysis of composite beams: simple and accurate closed-form expressions", Compos. Struct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E. A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383.
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276.
- Jafari-Talookolaei, R.A., Salarieh, H. and Kargarnovin, M.H. (2011), "Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation", Acta Mechanica, 219(1), 65-75. https://doi.org/10.1007/s00707-010-0439-x
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Steel Compos. Struct., Int. J., 64(4), 391-402.
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., Int. J., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., Int. J., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., Int. J., 15(5), 481-505.
- Kumar, C.N. and Singh, B.N. (2009), "Thermal buckling and postbuckling of laminated composite plates with SMA fibers using layerwise theory", Int. J. Computat. Methods Eng. Sci. Mech., 10(6), 423-429. https://doi.org/10.1080/15502280903108024
- Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250.
- Latifi, M., Kharazi, M. and Ovesy, H.R. (2016), "Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory", Thin-Wall. Struct., 104, 62-70.
- Li, Z.M. and Qiao, P. (2015a), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028
- Li, Z.M. and Qiao, P. (2015b) "Thermal postbuckling analysis of anisotropic laminated beams with different boundary conditions resting on two-parameter elastic foundations", Eur. J. Mech.- A/Solids, 54, 30-43. https://doi.org/10.1016/j.euromechsol.2015.06.001
- Li, Z.M. and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. https://doi.org/10.1016/j.oceaneng.2016.02.017
- Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., Int. J., 53(4), 767-780. https://doi.org/10.12989/sem.2015.53.4.767
- Loja, M.A.R., Barbosa, J.I., Soares, C.M.M. (2001), "Static and dynamic behaviour of laminated composite beams", Int. J. Struct. Stabil. Dyn., 1(4), 545-560. https://doi.org/10.1142/S0219455401000354
- Machado, S.P. (2007), "Geometrically non-linear approximations on stability and free vibration of composite beams", Eng. Struct., 29(12), 3567-3578. https://doi.org/10.1016/j.engstruct.2007.08.009
- Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Mareishi, S., Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams", Compos. Part B: Eng., 59, 123-132. https://doi.org/10.1016/j.compositesb.2013.11.017
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
- Mororo, L.A.T., Melo, A.M.C.D. and Parente Junior, E. (2015), "Geometrically nonlinear analysis of thin-walled laminated composite beams", Latin Am. J. Solids Struct., 12(11), 2094-2117. https://doi.org/10.1590/1679-78251782
- Oliveira, B.F. and Creus, G.J. (2003), "Nonlinear viscoelastic analysis of thin-walled beams in composite material",Thin-Wall. Struct., 41(10), 957-971. https://doi.org/10.1016/S0263-8231(03)00042-9
- Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008
- Pai, P.F. and Nayfeh, A.H. (1992), "A nonlinear composite beam theory", Nonlinear Dyn., 3(4), 273-303. https://doi.org/10.1007/BF00045486
- Patel, S.N. (2014), "Nonlinear bending analysis of c composite stiffened plates", Steel Compos. Struct., Int. J., 17(6), 867-890. https://doi.org/10.12989/scs.2014.17.6.867
- Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Compos. Struct., 46(2), 189-196. https://doi.org/10.1016/S0263-8223(99)00054-9
- Sheinman, I. and Adan, M. (1987), "The effect of shear deformation on post-buckling behavior of laminated beams", J. Appl. Mech., 54(3), 558-562. https://doi.org/10.1115/1.3173069
- Shen, H.S., Chen, X. and Huang, X.L. (2016), "Nonlinear bending and thermal postbuckling of functionally graded fiber reinforced composite laminated beams with piezoelectric fiber reinforced composite actuators", Compos. Part B: Eng., 90, 326-335. https://doi.org/10.1016/j.compositesb.2015.12.030
- Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphenereinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
- Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), "Nonlinear bending of thin and thick unsymmetrically laminated composite beams using refined finite element model", Comput. Struct., 42(4), 471-479. https://doi.org/10.1016/0045-7949(92)90114-F
- Stoykov, S. and Margenov, S. (2014), "Nonlinear vibrations of 3D laminated composite beams", Math. Problems Eng.
- Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., Int. J., 62(1), 107-111. https://doi.org/10.12989/sem.2017.62.1.107
- Valido, A.J. and Cardoso, J.B. (2003), "Geometrically nonlinear composite beam structures: Design sensitivity analysis", Eng. Optimiz., 35(5), 531-551. https://doi.org/10.1080/03052150310001604784
- Vinson, J.R. and Sierakowski, R.L. (2002), "The behavior of Structures Composed of Composite Materials", Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands.
- Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
Cited by
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2018, https://doi.org/10.12989/scs.2018.27.5.567
- Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2018, https://doi.org/10.12989/scs.2018.29.4.483
- Hygrothermal Post-Buckling Analysis of Laminated Composite Beams vol.11, pp.1, 2018, https://doi.org/10.1142/s1758825119500091
- Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.075
- Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.241
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263
- A new procedure for post-buckling analysis of plane trusses using genetic algorithm vol.40, pp.6, 2018, https://doi.org/10.12989/scs.2021.40.6.817