DOI QR코드

DOI QR Code

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin (School of Mechanical Engineering, University of Tehran) ;
  • Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University) ;
  • Rastgoo, Abbas (School of Mechanical Engineering, University of Tehran) ;
  • Hosseini, Mohammad (Department of Mechanical Engineering, Shahid Chamran University of Ahvaz)
  • Received : 2017.08.07
  • Accepted : 2017.12.28
  • Published : 2018.03.25

Abstract

This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

Keywords

References

  1. Adeli, M.M., Hadi, A., Hosseini, M. and Gorgani, H.H. (2017), "Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory", Eur. Phys. J. Plus, 132(9), 393. https://doi.org/10.1140/epjp/i2017-11688-0
  2. Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Computat. Appl. Mech., 48(1), 15-26.
  3. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007
  4. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Darabi, M.A. (2016), "Coupled longitudinal-transverserotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin's strain gradient theory", Appl. Math. Model., 40(23-24), 9872-9891. https://doi.org/10.1016/j.apm.2016.06.042
  5. Sadrabadi, S.A., Rahimi, G.H., Citarella, R., Shahbazi Karami, J., Sepe, R. and Esposito, R. (2017), "Analytical solutions for yield onset achievement in FGM thick walled cylindrical tubes undergoing thermomechanical loads", Compos. Part B: Eng., 116, 211-223. https://doi.org/10.1016/j.compositesb.2017.02.023
  6. Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nanobeams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
  7. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  8. Bahrami, A. and Teimourian, A. (2015), "Nonlocal scale effects on buckling, vibration and wave reflection in nanobeams via wave propagation approach", Compos. Struct., 134, 1061-1075. https://doi.org/10.1016/j.compstruct.2015.09.007
  9. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  10. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  11. Burlayenko, V.N., Altenbach, H., Sadowski, T., Dimitrova, S.D. and Bhaskar, A. (2017), "Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements", Appl. Math. Model., 45, 422-438. https://doi.org/10.1016/j.apm.2017.01.005
  12. Chen, C., Li, S., Dai, L. and Qian, C. (2014), "Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces", Commun. Nonlinear Sci. Numer. Simul., 19(5), 1626-1637. https://doi.org/10.1016/j.cnsns.2013.09.017
  13. Civalek, O . (2017), "Vibration of laminated composite panels and curved plates with different types of FGM composite constituent", Compos. Part B: Eng., 122, 89-108. https://doi.org/10.1016/j.compositesb.2017.04.012
  14. Ebrahimi, F. and Barati, M.R. (2016a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952.
  15. Ebrahimi, F. and Barati, M.R. (2016b), "Thermal Buckling Analysis of Size-Dependent FG Nanobeams Based on the Third-Order Shear Deformation Beam Theory", Acta Mechanica Solida Sinica, 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5
  16. Ebrahimi, F. and Barati, M.R. (2016c), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  17. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182.
  18. Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  19. Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2017), "A new nonlocal elasticity theory with graded nonlocality for thermomechanical vibration of FG nanobeams via a nonlocal thirdorder shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522.
  20. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.-A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Computat., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072
  21. Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Model., 37(10-11), 6929-6939. https://doi.org/10.1016/j.apm.2013.01.043
  22. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  23. Eringen, A.C. (1972b), "Theory of micromorphic materials with memory", Int. J. Eng. Sci, 10(7), 623-641. https://doi.org/10.1016/0020-7225(72)90089-4
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  25. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  26. Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038.
  27. Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
  28. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
  29. Ghannadpour, S., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  30. Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Computat. Appl. Mech., 48(1), 89-98.
  31. Goodarzi, M., Nikkhah Bahrami, M. and Tavaf, V. (2017), "Refined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model", J. Computat. Appl. Mech., 48(1), 123-136.
  32. Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science & Business Media.
  33. Hadi, A., Rastgoo, A., Daneshmehr, A. and Ehsani, F. (2013), "Stress and strain analysis of functionally graded rectangular plate with exponentially varying properties", Indian J. Mater. Sci.
  34. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
  35. Hosseini, M., Shishesaz, M., Tahan, K.N. and Hadi, A. (2016), "Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials", Int. J. Eng. Sci., 109, 29-53. https://doi.org/10.1016/j.ijengsci.2016.09.002
  36. Hosseini, M., Gorgani, H.H., Shishesaz, M. and Hadi, A. (2017), "Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on Strain Gradient Theory", Int. J. Appl. Mech., 9(6), 1750087. https://doi.org/10.1142/S1758825117500879
  37. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
  38. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
  39. Jeyakarthikeyan, P.V., Subramanian, G. and Yogeshwaran, R. (2017), "An alternate stable midpoint quadrature to improve the element stiffness matrix of quadrilaterals for application of functionally graded materials (FGM)", Comput. Struct., 178, 71-87. https://doi.org/10.1016/j.compstruc.2016.10.008
  40. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-Dependent Thermomechanical Creep Behavior of FGM Thick Hollow Cylindrical Shells Under Non-Uniform Internal Pressure", Int. J. Appl. Mech., 9(6), Article Number: 1750086.
  41. Keivani, M., Koochi, A. and Abadyan, M. (2016), "Coupled effects of surface energy and size dependency on the stability of nanotweezers using GDQ method", Microsyst. Technol., 23(5), 1295-1308.
  42. Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  43. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  44. Li, L. and Hu, Y. (2017a), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
  45. Li, L. and Hu, Y. (2017b), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  46. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  47. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
  48. Li, L., Li, X. and Hu, Y. (2018), "Nonlinear bending of a twodimensionally functionally graded beam", Compos. Struct., 184, 1049-1061. https://doi.org/10.1016/j.compstruct.2017.10.087
  49. Lu, C., Chen, W., Xu, R. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solids Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
  50. Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), Article Number: 1650054.
  51. Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal, 11(1), 415-448. https://doi.org/10.1007/BF00253946
  52. Najibi, A. and Talebitooti, R. (2017), "Nonlinear transient thermoelastic analysis of a 2D-FGM thick hollow finite length cylinder", Compos. Part B: Eng., 111, 211-227. https://doi.org/10.1016/j.compositesb.2016.11.055
  53. Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
  54. Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9.
  55. Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11.
  56. Nejad, M.Z. and Rahimi, G.H. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays, 4(3), 131-140.
  57. Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chinese Inst. Engr., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
  58. Nejad, M.Z., Rahimi, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26.
  59. Nejad, M., Rastgoo, A. and Hadi, A. (2014a), "Effect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique", J. Solid Mech., 6(4), 366-377.
  60. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014b), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
  61. Nejad, M.Z., Jabbari, M. and Ghannad M. (2015a), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
  62. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
  63. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
  64. Nejad, M.Z., Abedi, M., Lotfian, M.H. and Ghannad, M. (2016b), "Exact and numerical elastic analysis for the FGM thick-walled cylindrical pressure vessels with exponentially-varying properties", Arch. Metal. Mater., 61(3), 1303-1308. https://doi.org/10.1515/amm-2016-0215
  65. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017a), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mechanica, 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
  66. Nejad, M.Z., Jabbari, M. and Hadi, A. (2017b), "A review of functionally graded piezoelectric thick shells", J. Computat. Appl. Mech. DOI: 10.22059/JCAMECH.2017.247963.220
  67. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017c), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169.
  68. Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
  69. Pradhan, S. and Phadikar, J. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 33(2), 193-213. https://doi.org/10.12989/sem.2009.33.2.193
  70. Rahmani, O., Refaeinejad, V. and Hosseini, S. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
  71. Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity", Compos. Part B: Eng., 114, 404-417. https://doi.org/10.1016/j.compositesb.2017.01.038
  72. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048
  73. Shishesaz, M., Hosseini, M., Tahan, K.N. and Hadi, A. (2017), "Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory", Acta Mechanica, 228(12), 4141-4168. https://doi.org/10.1007/s00707-017-1939-8
  74. Shu, C. and Chew, Y. (1998), "On the equivalence of generalized differential quadrature and highest order finite difference scheme", Comput. Methods Appl. Mech. Eng,, 155(3), 249-260. https://doi.org/10.1016/S0045-7825(97)00150-3
  75. Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B: Eng., 108, 18-34.
  76. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  77. Steinberg, M.A. (1986), "Materials for aerospace", Sci. Am., (United States), 255(4), 66-73. https://doi.org/10.1038/scientificamerican1086-66
  78. Taczala, M., Buczkowski, R. and Kleiber, M. (2017), "Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments", Compos. Part B: Eng., 109, 238-247. https://doi.org/10.1016/j.compositesb.2016.09.023
  79. Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  80. Thai, H.-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66.
  81. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  82. Wang, Y.Q. and Zu, J.W. (2017), "Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity", Compos. Part B: Eng., 117, 74-88. https://doi.org/10.1016/j.compositesb.2017.02.037
  83. Wang, C., Zhang, Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904. https://doi.org/10.1088/0022-3727/39/17/029
  84. Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  85. Yu, Y. J., Xue, Z.-N., Li, C.-L. and Tian, X.-G. (2016), "Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity", Compos. Struct., 146, 108-113. https://doi.org/10.1016/j.compstruct.2016.03.014

Cited by

  1. Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2018, https://doi.org/10.1142/s1758825119500868
  2. Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field vol.12, pp.2, 2018, https://doi.org/10.1142/s1758825120500210
  3. Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads vol.18, pp.suppl1, 2018, https://doi.org/10.1080/14484846.2018.1481562
  4. Elastic state of functionally graded curved beam on the plane stress state subject to thermal load vol.48, pp.6, 2020, https://doi.org/10.1080/15397734.2019.1660890
  5. Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler-Pasternak Foundation vol.12, pp.8, 2018, https://doi.org/10.1142/s1758825120500933
  6. Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189