Acknowledgement
Supported by : SASTRA University
References
- Abdallah, M.H., Abdin, E.M., Selmy, A.I. and Khashaba, U.S. (1996), "Reliability analysis of GFRP pultruded composite rods", Int. J. Qual. Reliab. Manage., 13(12), 88-98.
- Adasooriya, N.D. (2016), "Fatigue reliability assessment of ageing railway truss bridges: Rationality of probabilistic stress-life approach", Case Stud. Struct. Eng., 6, 1-10. https://doi.org/10.1016/j.csse.2016.04.002
- Akdag, S.A. and Dinler, A. (2009), "A new method to estimate Weibull parameters for wind energy applications", Energy Convers. Manage., 50, 1761-1766. https://doi.org/10.1016/j.enconman.2009.03.020
- Akpinar, E.K. andAkpinar, S. (2004), "Determination of the wind energy potential for Maden-Elazig, Turkey", Energy Convers. Manage., 45, 2901-2914. https://doi.org/10.1016/j.enconman.2003.12.016
- Arora, S. and Singh, S.P. (2016), "Analysis of flexural fatigue failure of concrete made with 100% coarse recycled concrete aggregates", Constr. Build. Mater., 102, 782-791. https://doi.org/10.1016/j.conbuildmat.2015.10.098
- Ballinger, C.A. (1972), "Cumulative fatigue damage characteristics of plain concrete", High Res Rec No., 370, 48-60.
- Bedi, R. and Chandra, R. (2009), "Fatigue-life distributions and failure probability for glass-fiber reinforced polymeric composites", Compos. Sci. Technol., 69, 1381-1387. https://doi.org/10.1016/j.compscitech.2008.09.016
- Bernard, A. and Bosi, L.E.C. (1953). "The Plotting of observations on probability paper", Statistica Neerlandica, 53(7), 163-173.
- Celik, A.N. (2003), "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey", Renew Energy, 29, 593-604.
- Chang, T.J, Wu, Y.T., Hsu, H.Y., Chu, C.R. and Liao, C.M. (2003), "Assessment of wind characteristics and wind turbine characteristics in Taiwan", Renew Energy, 28, 851-871. https://doi.org/10.1016/S0960-1481(02)00184-2
- Chang, T.P. (2011), "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application", Appl. Energy, 88, 272-282. https://doi.org/10.1016/j.apenergy.2010.06.018
- Chen, X., Ding, Y. and Azevedo, C. (2011), "Combined effect of steel fibres and steel rebars on impact resistance of high performance concrete", J. Central South Univ. Technol., 18, 1677-1684. https://doi.org/10.1007/s11771-011-0888-y
- Costa, R.P.A, De Sousa, R.C., De Andrade, C.F. and Da Silva, M.E.V. (2012), "Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of brazil", Appl. Energy, 89, 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003
- Dirikolu, M.H. and Aktas, A. (2002), "Statistical analysis of fracture strength of composite materials using Weibull distribution", Turkish J. Eng. Environ. Sci., 26, 45-48.
- Fredy, C. and Artur, J.L. (2015), "A new generalized Weibull distribution generated by gamma random variables", J. Egypt. Math. Soc., 23, 382-390. https://doi.org/10.1016/j.joems.2014.03.009
- Ganesan, N., Bharati Raj, L. and Shashikala, A.P. (2013), "Flexural fatigue behavior of self-compacting rubberized concrete", Constr. Build. Mater., 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077
- Goel, S., Singh, S.P. and Singh, P. (2012), "Flexural fatigue strength and failure probability of self-compacting fibre reinforced concrete beams", Eng. Struct., 40(7), 131-40. https://doi.org/10.1016/j.engstruct.2012.02.035
- Gumble, E.J. (1963), "Parameters in distribution of fatigue life", J. Eng. Mech., ASCE, 89(5), 45-63.
- Hilsdorf, H.K. and Kesler, C.E. (1966), "Fatigue strength of concrete under varying flexural stresses", ACI Proc., 63(10), 1059-1076.
- Kim, J.K. and Kim, Y.Y. (1996), "Experimental study of the fatigue behavior of high strength concrete", Cement Concrete Res., 26(10), 1513-1523. https://doi.org/10.1016/0008-8846(96)00151-2
- Kumar, K.S.P. and Gaddada, S. (2012), "Statistical scrutiny of Weibull parameters for wind energy potential appraisal in the area of northern Ethiopia", Appl. Energy, 89, 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003
- Kwon, S.D. (2010), "Uncertainty analysis of wind energy potential assessment", Appl. Energy, 87, 856-865. https://doi.org/10.1016/j.apenergy.2009.08.038
- Lai, C.M. and Lin, T.H. (2006), "Technical assessment of the use of a small-scale wind power system to meet the demand for electricity in a land aquafarm in Taiwan", Renew Energy, 31, 877-892. https://doi.org/10.1016/j.renene.2005.05.007
- Lee, M.K. and Barr, B.I.G. (2004), "An overview of the fatigue behavior of plain and fibre reinforced concrete", Cement Concrete Compos., 26(4), 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
- Levent, B., Mehmet, I., Yilser, D. and Ayhan, A. (2015), "An investigation on wind energy potential and small scale wind turbine performance at Incek region-Ankara, Turkey", Energy Convers. Manage., 103, 910-23. https://doi.org/10.1016/j.enconman.2015.07.017
- Li, H., Zhang, M. andOu, J. (2007), "Flexural fatigue performance of concrete containing nano-particles for pavement", Int. J. Fatig., 29, 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004
- Liu, F., Meng, L.Y., Ning, G.F. and Li, L.J. (2015), "Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement", Constr. Build. Mater., 95, 207-217. https://doi.org/10.1016/j.conbuildmat.2015.07.042
- Lysen, E.H. (1983), Introduction to Wind Energy, SWD Publication, The Netherlands.
- Manwell, J.F., McGowan, J.G. and Rogers, A.L. (2002), Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, Amherst, USA
- Mathew, S. (2006), Wind Energy: Fundamentals, Resource Analysis and Economics, Springer-Verlag, Berlin, Heidelberg.
- Michael, B.F., David, T., Mike, S.V. and Martin, T.J. (2004), "Analysis of tensile bond strengths using Weibull statistics", Biomater., 25, 5031-5. https://doi.org/10.1016/j.biomaterials.2004.01.060
- Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N. and Jalilvand, M. (2016), "Assessing different parameters estimation methods of Weibull distribution to compute wind power density", Energy Convers. Manage., 108, 322-335. https://doi.org/10.1016/j.enconman.2015.11.015
- Mohammadi, Y. and Kaushik, S.K. (2005), "Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels", J. Mater. Civil Eng., ASCE, 17(6), 650-658. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(650)
- Murali, G. and Chandana, V. (2017a), "Weibull reliability analysis of impact resistance on self-compacting concrete reinforced with recycled CFRP pieces", Roman. J. Mater., 47(2), 196 -203.
- Murali, G., Gayathri, R., Ramkumar, V.R. and Karthikeyan, K. (2018), "Two statistical scrutinize of impact strength and strength reliability of steel fibre-reinforced concrete", KSCE J. Civil Eng., 22(1), 257-269. https://doi.org/10.1007/s12205-017-1554-1
- Murali, G., Muthulakshmi, T., NycilinKarunya, N., Iswarya, R., Hannah Jennifer, G. and Karthikeyan, K. (2017b), "Impact response and strength reliability of green high-performance fibre reinforced concrete subjected to freeze-thaw cycles in NaCl solution", Mater. Sci. Medziagotyra, 23(4), 384-388.
- Murdock, J.W. and Kesler, C.E. (1958), "Effect of range of stress on fatigue strength of plain concrete beams", ACI Proc., 30(2), 221-231.
- Oh, B.H. (1986), "Fatigue analyses of plain concrete in flexure", J. Struct. Eng., ASCE, 112(2), 273-288. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(273)
- Oh, B.H. (1991a), "Cumulative damage theory of concrete under variable-amplitude fatigue loading", ACI Mater. J., 88(1), 41-48.
- Oh, B.H. (1991b), "Fatigue life distribution of concrete for various stress levels", ACI Mater. J., 88(2), 122-128.
- Saucedo, L., Yu, R.C., Medeiros, A., Zhang, X. and Ruiz, G. (2013), "A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete", Int. J. Fatig., 48, 308-318. https://doi.org/10.1016/j.ijfatigue.2012.11.013
- Saxena, B.K. and Subba Rao, K.V. (2015), "Comparison of Weibull parameters computation methods and analytical estimation of wind turbine capacity factor using polynomial power curve model: case study of a wind farm", Wind Water Solar, 2(3), 1-11. https://doi.org/10.1186/s40807-014-0001-x
- Seguro, J.V. and Lambert, T.W. (2000), "Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis", J. Wind Eng. Indust. Aerodyn., 85, 75-84. https://doi.org/10.1016/S0167-6105(99)00122-1
- Selmy, A.I., Azab, N.A. and Abd El-baky, M.A. (2013), "Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis", Compos. Part B, 45, 518-527. https://doi.org/10.1016/j.compositesb.2012.08.017
- Shi, X.P., Fwa, T.F. and Tan, S.A. (1993), "Flexural fatigue strength of plain concrete", ACI Mater. J., 90(5), 435-440.
- Shokrieh, M.M., Haghighatkhah, A.R. and Esmkhan, M. (2017). "Flexural fatigue modeling of short fibers/epoxy composites", Struct. Eng. Mech., 64(3), 287-292. https://doi.org/10.12989/SEM.2017.64.3.287
- Shu, Z.R., Li, Q.S. and Chan, P.W. (2015), "Statistical analysis of wind characteristics and wind energy potential in Hong Kong", Energy Convers. Manage., 101, 644-657. https://doi.org/10.1016/j.enconman.2015.05.070
- Singh, S.P. and Kaushik, S.K. (2001), "Flexural fatigue analysis of steel fibre reinforced concrete", ACI Mater. J., 98(4), 306-312.
- Singh, S.P. and Kaushik, S.K. (2003), "Fatigue strength of steel fibre reinforced concrete in flexure", Cement Concrete Compos., 25, 779-786. https://doi.org/10.1016/S0958-9465(02)00102-6
- Singh, S.P., Mohammadi, Y. and Kaushik, S.K. (2005), "Flexural fatigue analysis of steel fibrous concrete containing mixed fibres", ACI Mater. J., 102(6), 438-444.
- Singh, S.P., Mohammadi, Y., Goel, S. and Kaushik, S.K. (2007), "Prediction of mean and design fatigue lives of steel fibrous concrete beams in flexure", Adv. Struct. Eng., 10(1), 25-36. https://doi.org/10.1260/136943307780150896
- Sun, J., Yu, J.M. and Zhao, H.S. (2011), "Two-parameter Weibull distribution theory testing in fatigue life of asphalt mixture", Appl. Mech. Mater. Adv. Tran., 45(8), 97-98.
- Tepfers, R. and Kutti, T. (1979), "Fatigue strength of plain, ordinary, and lightweight concrete", ACI Proc., 76(5), 635-652.
- Thomas, C., Setien, J., Polanco, J.A., Lombillo, I. and Cimentada, A. (2014), "Fatigue limit of recycled aggregate concrete", Constr. Build. Mater., 52, 146-154. https://doi.org/10.1016/j.conbuildmat.2013.11.032
- Ucar, A. and Balo, F. (2009), "Investigation of wind characteristics and assessment of wind generation potentiality in Uludag-Bursa, Turkey", Appl. Energy, 86, 333-339. https://doi.org/10.1016/j.apenergy.2008.05.001
- Wirsching, P.H. and Yao, J.T.P. (1970), "Statistical methods in structural fatigue", Proc., ASCE, 100(ST6), 1201-1219.
- Yan, H.Q. and Wang, Q.Y. (2010), "Experimental research on fatigue behavior of recycled aggregate reinforcement concrete from earthquake-stricken area", Adv. Mater. Res., 906, 160-162.
- Yan, H.Q., Wang, Q.Y. and Ning, Y. (2011), "Experimental research on fatigue behavior of recycled aggregate reinforcement concrete made from building scrap", Adv. Mater. Res., 339, 448-451. https://doi.org/10.4028/www.scientific.net/AMR.339.448
- Zhang, L.F., Xie, M. and Tang. L.C. (2007), "A study of two estimation approaches for parameters of Weibull distribution based on WPP", Reliab. Eng. Syst. Saf., 92, 360-368. https://doi.org/10.1016/j.ress.2006.04.008
- Zhou, J., Zheng, M., Wang, Q., Yang, J. and Lin, T. (2016), "Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates", Constr. Build. Mater., 124, 897-905. https://doi.org/10.1016/j.conbuildmat.2016.07.136
- Zhou, W., Yang, H.X. and Fang, Z.H. (2006), "Wind power potential and characteristic analysis of the Pearl River Delta region, China", Renew Energy, 31, 739-753. https://doi.org/10.1016/j.renene.2005.05.006
Cited by
- Residual Properties and Axial Bearing Capacity of Steel Reinforced Recycled Aggregate Concrete Column Exposed to Elevated Temperatures vol.7, pp.None, 2018, https://doi.org/10.3389/fmats.2020.00187
- The Dynamic Mechanical Properties for Recycled Aggregate Concrete under Tensile-Compressive States vol.24, pp.5, 2018, https://doi.org/10.1007/s12205-020-2307-0
- Impact Performance of Steel Fiber-Reinforced Self-Compacting Concrete against Repeated Drop Weight Impact vol.11, pp.2, 2021, https://doi.org/10.3390/cryst11020091