Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- ASTM (2007), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) cube specimens), American Society for Testing and Materials, ASTM International West Conshohocken, PA.
- Cho, C.G., Lim, H.J., Lee, B.Y. and Choi, Y. (2015), "Experiments and performances of strain-hardening fiber low cementitious composites", Adv. Mech. Eng., 7(6), 1-7. https://doi.org/10.1177/1687814015585420
- Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C. and Lee, Y. (2016), "Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite", Cem. Concr. Compos., 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
- Choi, J.I., Song, K.I., Song, J.K. and Lee, B.Y. (2016), "Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites", Compos. Struct., 138, 116-121. https://doi.org/10.1016/j.compstruct.2015.11.046
- Choi, S.J., Choi, J.I., Song, J.K. and Lee, B.Y. (2015), "Rheological and mechanical properties of fiber-reinforced alkali-activated composite", Constr. Build. Mater., 96, 112-118. https://doi.org/10.1016/j.conbuildmat.2015.07.182
- Felekoglu, B. and Keskinates, M. (2016), "Multiple cracking analysis of HTPP-ECC by digital image correlation method", Comput. Concrete, 17(6), 831-848. https://doi.org/10.12989/cac.2016.17.6.831
- Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q. and Li, V.C. (2014), "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC", Compos. Part B Eng., 60, 359-370. https://doi.org/10.1016/j.compositesb.2013.12.076
- Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cementbased composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327
- JSCE (2008), Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Japan Society of Civil Engineers, Japan.
- Kanda, T. and Li, V.C. (1998), "Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix", J. Mater. Civil. Eng., ASCE, 10(1), 5-13. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(5)
- Kanda, T. and Li, V.C. (2006), "Practical design criteria for saturated pseudo strain hardening behavior in ECC", J. Adv. Concr. Technol., 4(1), 59-72. https://doi.org/10.3151/jact.4.59
- Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145, 37-42. https://doi.org/10.1016/j.compstruct.2016.02.075
- Kang, S.T., Lee, K.S., Choi, J.I., Lee, Y., Felekoglu, B. and Lee, B.Y. (2016), "Control of tensile behavior of ultra-high performance concrete through artificial flaws and fiber hybridization", Int. J. Concrete Struct. Mater., 10(3), 33-41. https://doi.org/10.1007/s40069-016-0155-6
- Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H. and Li, V.C. (2012), "Strain hardening fiber reinforced alkali-activated mortar-A feasibility study", Constr. Build. Mater., 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
- Lee, B.Y., Kim, J.K. and Kim, Y.Y. (2010), "Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics", Comput. Concrete, 7(5), 455-468. https://doi.org/10.12989/cac.2010.7.5.455
- Lee, B.Y., Lee, Y., Kim, J.K. and Kim, Y.Y. (2010), "Micromechanics-based fiber-bridging analysis of strainhardening cementitious composite accounting for fiber distribution", CMES-Comp. Model. Eng. Sci. CMES-Comp. Model. Eng. Sci., 61(2), 111-132.
- Li, M. and Li, V.C. (2013), "Rheology, fiber dispersion, and robust properties of engineered cementitious composites", Mater. Struct., 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
- Li, M., Luu, H.C., Wu, C., Mo, Y. and Hsu, T.T. (2014), "Seismic performance of reinforced engineered cementitious composite shear walls", Earthq. Struct., 7(5), 691-704. https://doi.org/10.12989/eas.2014.7.5.691
- Li, V.C. (2012), "Tailoring ECC for special attributes: A review", Int. J. Concrete Struct. Mater., 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
- Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492.
- Maalej, M. and Li, V.C. (1994), "Flexural/tensile-strength ratio in engineered cementitious composites", J. Mater. Civil. Eng., ASCE, 6(4), 513-528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
- Nematollahi, B., Sanjayan, J. and Ahmed Shaikh, F.U. (2015), "Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite", J. Mater. Civil. Eng., ASCE, 04015001.
- Nematollahi, B., Sanjayan, J. and Shaikh, F.U.A. (2015), "Strain hardening behavior of engineered geopolymer composites: effects of the activator combination", J. Aust. Ceram. Soc., 51(1), 54-60.
- Ohno, M. and Li, V.C. (2014), "A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites", Constr. Build. Mater., 57, 163-168. https://doi.org/10.1016/j.conbuildmat.2014.02.005
- Ranade, R., Li, V.C., Stults, M.D., Heard, W.F. and Rushing, T.S. (2013), "Composite properties of high-strength, high-ductility concrete", ACI Mater. J., 110(4), 413-422.
- Tosun-Felekoglu, K., Godek, E., Keskinates, M. and Felekoglu, B. (2017), "Utilization and selection of proper fly ash in cost effective green HTPP-ECC design", J. Clean Prod., 149, 557-568. https://doi.org/10.1016/j.jclepro.2017.02.117
- Yang, E.H., Wang, S., Yang, Y. and Li, V.C. (2008), "Fiberbridging constitutive law of engineered cementitious composites", J. Adv. Concrete Technol., 6(1), 181-193. https://doi.org/10.3151/jact.6.181
Cited by
- Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877