References
- Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliabilitybased design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52, 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099
- AISC (2001), Manual of Steel Construction: Load and Resistance Factor Design, American Institute of Steel Construction, U.S.A.
- Asil Gharebaghi, S., Kaveh, A. and Ardalan Asl, M. (2017), "A new meta-heuristic optimization algorithm using star graph", Smart Struct. Syst., 20(1), 99-114. https://doi.org/10.12989/SSS.2017.20.1.099
- Camp, C.V., Bichon, B.J. and Stovall, S. (2005), "Design of steel frames using ant colony optimization", J. Struct. Eng., 131(3), 369-379.
- Cheng, M.Y. and Prayogo, D. (2014), "Symbiotic organisms search: A new metaheuristic optimization algorithm", Comput. Struct., 139, 98-112.
- Cheng, M.Y. and Prayogo, D. (2017), "A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems", Eng. Comput., 33(1), 55-69. https://doi.org/10.1007/s00366-016-0456-z
- Cheng, M.Y., Prayogo, D., Wu, Y.W. and Lukito, M.M. (2016), "A hybrid harmony search algorithm for discrete sizing optimization of truss structure", Automat. Constr., 69, 21-33. https://doi.org/10.1016/j.autcon.2016.05.023
- Degertekin, S.O. (2008), "Optimum design of steel frames using harmony search algorithm", Struct. Mltidiscipl. Optim., 36(4), 393-401. https://doi.org/10.1007/s00158-007-0177-4
- Degertekin, S.O. (2012), "Improved harmony search algorithms for sizing optimization of truss structures", Comput. Struct., 92-93, 229-241.
- Degertekin, S.O. (2013), "Sizing truss structures using teachinglearning-based optimization", Comput. Struct., 119, 177-188. https://doi.org/10.1016/j.compstruc.2012.12.011
- Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J., 29(3), 111-115.
- Epitropakis, M.G., Plagianakos, V.P. and Vrahatis, M.N. (2012), "Evolving cognitive and social experience in particle swarm optimization through differential evolution: A hybrid approach", Inf. Sci., 216, 50-92. https://doi.org/10.1016/j.ins.2012.05.017
- Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75, 209-224. https://doi.org/10.1016/S0045-7949(99)00084-X
- Erol, O.K. and Eksin, I. (2006), "A new optimization method: big bang-big crunch", Adv. Eng. Softw., 37(2), 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
- Giftson Samuel, G. and Christober Asir Rajan, C. (2015), "Hybrid: Hybrid: Particle swarm optimization-genetic algorithm and particle swarm optimization-shuffled frog leaping algorithm for long-term generator maintenance scheduling", J. Electr. Pow. Energy Syst., 65, 432-442. https://doi.org/10.1016/j.ijepes.2014.10.042
- Haddar, B., Khemakhem, M., Hanafi, S. and Wilbaut, C. (2016), "A hybrid quantum particle swarm optimization for the multidimensional knapsack problem", Eng. Appl. Artif. Intell., 55, 1-13.
- Hanson, M.A. (1981), "On sufficiency of the kuhn-tucker conditions", J. Math. Analy. Appl., 80(2), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
- Hoseini, P. and Shayesteh, M.G. (2013), "Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing", Digit. Sign. Proc., 23(3), 879-893. https://doi.org/10.1016/j.dsp.2012.12.011
- Jaradat, G., Ayob, M. and Almarashdeh, I. (2016), "The effect of elite pool in hybrid population-based meta-heuristics for solving combinatorial optimization problems", Appl. Soft Comput., 44, 45-56. https://doi.org/10.1016/j.asoc.2016.01.002
- Jeslin Drusila Nesamalar, J., Venkatesh, P. and Charles Raja, S. (2016), "Managing multi-line power congestion by using hybrid Nelder-Mead-Fuzzy adaptive particle swarm optimization (HNM-FAPSO)", Appl. Soft. Comput., 43, 222-234. https://doi.org/10.1016/j.asoc.2016.02.013
- Kaveh, A. and Ilchi Ghazaan, M. (2015), "A comparative study of CBO and ECBO for optimal design of skeletal structures", Comput. Struct., 153, 137-147. https://doi.org/10.1016/j.compstruc.2015.02.028
- Kaveh, A. and Ilchi Ghazaan, M. (2018), "A new hybrid metaheuristic algorithm for optimal design of large-scale dome structures", Eng. Optim., 50(2), 235-252. https://doi.org/10.1080/0305215X.2017.1313250
- Kaveh, A. and Javadi, S.M. (2014), "An efficient hybrid particle swarm strategy, ray optimizer, and harmony search algorithm for optimal design of truss structures", Period. Polytech., 58(2), 65-81.
- Kaveh, A. and Laknejadi, K. (2013), "A hybrid evolutionary graph based multi-objective algorithm for layout optimization of truss structures", Acta Mech., 224, 343-364. https://doi.org/10.1007/s00707-012-0754-5
- Kaveh, A. and Mahdavi, V.R. (2013), "Optimal design of structures with multiple natural frequency constraints using a hybridized BB-BC/Quasi-Newton algorithm", Period. Politech., 57(1), 1-12.
- Kaveh, A. and Shahrouzi, M. (2008), "Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization", J. Numer. Meth. Eng., 73(4), 544-563. https://doi.org/10.1002/nme.2088
- Kaveh, A. and Talatahari, S. (2009a), "Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization", Stud. Comput. Intellig., 239, 159-198.
- Kaveh, A. and Talatahari, S. (2009b), "Size optimization of space trusses using big bang-big crunch algorithm", Comput. Struct., 87, 1129-1140.
- Kaveh, A. and Talatahari, S. (2009c), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Talatahari, S. (2010a), "A discrete big bang-big crunch algorithm for optimal design of skeletal structures", Asian J. Civil Eng., 11(1), 103-122.
- Kaveh, A. and Talatahari, S. (2010b), "Optimum design of skeletal structures using imperialist competitive algorithm", Comput. Struct., 88, 1220-1229. https://doi.org/10.1016/j.compstruc.2010.06.011
- Kaveh, A. and Talatahari, S. (2012), "Charged system search for optimal design of frame structures", Appl. Soft Comput., 12(1), 382-393. https://doi.org/10.1016/j.asoc.2011.08.034
- Kaveh, A., Bakhshpoori, T. and Afshari, E. (2015), "Hybrid PSO and SSO algorithm for truss layout and size optimization considering dynamic constraints", Struct. Eng. Mech., 54(3), 453-474. https://doi.org/10.12989/sem.2015.54.3.453
- Kaveh, A., Sheikholeslami, R., Talatahari, S. and Keshvari-Ilkhichi, M. (2014), "Chaotic swarming of particles: A new method for size optimization of truss structures", Adv. Eng. Softw., 67, 136-147. https://doi.org/10.1016/j.advengsoft.2013.09.006
- Kelner, V., Capitanescu, F., Leonard, O. and Wehenkel, L. (2008), "A hybrid optimization technique coupling an evolutionary and a local search algorithm", J. Comput. Appl. Math., 215(2), 448-456. https://doi.org/10.1016/j.cam.2006.03.048
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Sci., 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004
- Liu, J., Zhang, S., Wu, C., Liang, J., Wang, X. and Teo, K.L. (2016), "A hybrid approach to constrained global optimization", Appl. Soft Comput., 47, 281-294. https://doi.org/10.1016/j.asoc.2016.05.021
- Luenberger, D.G. (1973), Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Mass.
- Ma, H., Simon, D., Fei, M., Shu, X. and Chen, Z. (2014), "Hybrid biogeography-based evolutionary algorithms", Eng. Appl. Artif. Intell., 30, 213-224. https://doi.org/10.1016/j.engappai.2014.01.011
- Nayanatara, C., Baskaran, J. and Kothari, D.P. (2016), "Hybrid optimization implemented for distributed generation parameters in a power system network", J. Electr. Pow. Energy Syst., 78, 690-699.
- Ouyang, H., Gao, L., Kong X., Li, S. and Zou, D. (2016), "Hybrid harmony search particle swarm optimization with global dimension selection", Inf. Sci., 346, 318-337.
- Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85, 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
- Prayogo, D., Cheng, M.Y., Wu, Y.W., Herdany, A.A. and Prayogo, H. (2018), "Differential big bang-big crunch algorithm for construction-engineering design optimization", Automat. Constr., 85, 290-304. https://doi.org/10.1016/j.autcon.2017.10.019
- Rahami, H., Kaveh, A., Aslani, M. and Najian Asl, R. (2011), "A hybrid modified genetic-nelder mead simplex algorithm for large-scale truss optimization", J. Optim. Civil Eng., 1(1), 29-46.
- Rosen, J.B. (1960), "The gradient projection method for nonlinear programming. Part I. Linear constraints", J. Soc. Industr. Appl. Math., 8(1), 181-217. https://doi.org/10.1137/0108011
- Rosen, J.B. (1961), "The gradient projection method for nonlinear programming. Part II. Nonlinear constraints", J. Soc. Industr. Appl. Math., 9(4), 514-532. https://doi.org/10.1137/0109044
- Saka, M.P. and Kameshki, E.S. (1998), "Optimum design of multistory sway steel frames to bs5950 using genetic algorithm", Proceedings of the 4th International Conference on Computational Structures Technology, Edinburgh, Scotland, U.K.
- Shao, W., Pi, D. and Shao, Z. (2016), "A hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism for no-wait flow shop scheduling", Know-Bas. Syst., 107, 219-234. https://doi.org/10.1016/j.knosys.2016.06.011
- Soleimani, H. and Kannan, G. (2015), "A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks", Appl. Math. Modell., 39(14), 3990-4012. https://doi.org/10.1016/j.apm.2014.12.016
- Talatahari, S. (2016), "Symbiotic organisms search for optimum design of and grillage system", Asian J. Civil Eng., 17(3), 299-313.
- Talatahari, S., Gandomi, A.H., Yang, X.S. and Deb, S. (2015), "Optimum design of frame structures using the eagle strategy with differential evolution", Eng. Struct., 91, 16-25. https://doi.org/10.1016/j.engstruct.2015.02.026
- Tuba, M. and Bacanin, N. (2014), "Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems", Neurocomput., 143, 197-207.
- Wang, H., Sun, H., Li, C., Rahnamayan, S. and Pan, J.S. (2013), "Diversity enhanced particle swarm optimization with neighborhood search", Inf. Sci., 223, 119-135. https://doi.org/10.1016/j.ins.2012.10.012
- Wang, J., Yuan, W. and Cheng, D. (2015), "Hybrid genetic-particle swarm algorithm: An efficient method for fast optimization of atomic clusters", Comput. Theoret. Chem., 1059, 12-17. https://doi.org/10.1016/j.comptc.2015.02.003
- Wu, J., Long, J. and Liu, M. (2015), "Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm", Neurocomput., 148, 136-142. https://doi.org/10.1016/j.neucom.2012.10.043