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실시간 공정 데이터와 통계적 방법에 기반한 이상진단
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Abstract  Intelligent monitoring and diagnosis of production processes based on multivariate statistical methods has 
been one of important tasks for safety and quality issues. This is due to the fact that faults and unexpected events
may have serious impacts on the operation of processes. This study proposes a diagnostic scheme based on effective
representation of process measurement data and is evaluated using simulation process data. The effects of utilizing 
a preprocessing step and nonlinear statistical methods are also tested using fifteen faults of the simulation process. 
Results show that the proposed scheme produced more reliable results and outperformed other tested schemes with 
none of the filtering step and nonlinear methods. The proposed scheme is expected to be robust to process noises 
and easy to develop due to the lack of required rigorous mathematical process models or expert knowledge. 
 
요  약  생산 공정의 다변량 데이터에 기반한 지능적 공정 감시 및 진단 시스템은 조업의 안정성과 고품질의 제품을 달성하고 

경쟁력을 유지하기 위해서는 필수적인 업무 중 하나로 간주되고 있는데, 이와 같은 추세는 공정 이상이 발생하는 경우 안정
적이고 경제적인 조업에 큰 영향을 미치는 것에 기인한다. 본 연구에서는 다변량 공정 데이터에 기반한 진단기법을 제시하고 
이를 시뮬레이션 공정 데이터를 활용하여 그 성능을 평가하고자 한다. 또한 원 데이터의 전처리 과정의 유무와 비선형 방법
론의 활용이 진단 성능에 마치는 영향을 시뮬레이션 공정에서 제시된 15개의 공정 이상에 대해 평가하였다. 그 결과 제안된 
방법론이 신뢰할 만한 결과를 주었으며 다른 비교 방법론인 전처리 과정이 없거나 선형 방법론을 사용한 타 방법론 대비 

우월한 성능을 보여주었다. 제시된 방법론은 공정 데이터에 기반한 방법론으로서 공정에 대한 수학적 모델이나 지식 모델에 
비하여 상대적으로 모델링이 간편하며 공정 데이터의 잡음에 강건하다는 장점을 가진다.
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1. Introduction 

Continuous monitoring of industrial processes is 
quite necessary in order to guarantee  process safety 
and quality issues. Process faults or abnormal events 
should be detected and diagnosed as soon as possible. 
Based on the monitoring results provided appropriate 
remedial actions are determined and executed in an 

on-line basis[1]. The diagnosis is to identify assignable 
causes of the detected faults. Recently, massive process 
measurement data can be easily obtained from most of 
production processes. It has facilitated the use of 
multivariate statistical approaches to fault diagnosis 
problems[2]. Multivariate statistical techniques have 
been utilized in practical issues including principal 
component analysis (PCA), partial least squares (PLS), 
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and Fisher discriminant analysis (FDA) [3]-[5]. 
Nonlinear monitoring techniques have been also 

developed as extended versions of linear methods. 
They have the common things that input data are 
mapped into nonlinear spaces and then these mapped 
data are analysed. The use of such a kernel trick 
enables us to develop various kernel methods such as 
kernel PCA, kernel PLS and kernel FDA[6]. The 
selection of linear or nonlinear techniques depends on 
the problems of interest. In linear case, in general, data 
can be modeled effectively by both linear and 
nonlinear techniques. The use of a linear technique in 
nonlinear case, however, may not represent most of 
data correctly. 

As data measurement and sensing technologies 
advance, automated on-line data collection has become 
popular. The availability of such massive data sets has 
motivated the use of multivariate statistical approaches 
to diagnosis problems. Diagnosis problems can be 
treated as classification problems when there are lots of 
historical data obtained from various faulty conditions. 
The multivariate statistical techniques for fault 
diagnosis, in general, are considered to be easy to 
implement, computationally efficient, and relatively 
robust to noise[7]. When data analysis is performed, 
redundant portions of data may cause masking problem 
of underlying patterns. Thus preprocessing or filtering 
of raw data is necessary in order to improve the 
performance of data analysis. Combined with nonlinear 
and triangular methods efficient preprocessing step can 
be added to improve diagnosis results by removing 
unwanted parts of raw measurement data. 

This work proposes an multivariate statistical 
diagnostic scheme based on nonlinear representation of 
raw measurement data. To capture fault patterns in 
reduced spaces a triangular representation of process 
data is combined with nonlinear methods. This 
diagnostic scheme is suitable for distinguishing 
different groups of faults. In this work, a preprocessing 
or filtering step is added to eliminate unwanted parts of 
the data. The adoption of a filtering task is expected to 

improve the performance of the diagnostic scheme. The 
performance of the proposed diagnostic scheme is 
tested and demonstrated using measurement data of a 
simulation process. 

This paper is organized as follows. First, a brief 
review of proposed methods is presented. Then results 
of a case study on the simulation process are shown to 
demonstrate the performance of the diagnostic scheme. 
In addition, the effect of selecting linear or nonlinear 
methods is tested along with that of using 
preprocessing step or not. Finally, concluding remarks 
are given. 

2. Method

Discriminant analysis is frequently used in a 
classification problem, in which several groups of data 
are known a priori and new observations are classified 
into one of the groups. It has been seen in data mining 
and pattern recognition to find a linear combination of 
variables that separates several groups[6]. It is 
necessary to find certain directions w, along which the 
latent groups are discriminated as clearly as possible. 
Actually, w can be obtained by solving w(Cb-λCw)=0 
where Cb represents between-group covariance matrix 
and Cw within-group covariance matrix. Linear 
discriminant method can be stated: 

xwx Tf =)(              (1)

Then Rayleigh coefficient J(w) should be 
maximized to determine w:   

            wCw
wCww
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On the other hand, nonlinear version of discriminant 
analysis, called kernel Fisher’s discriminant analysis 
(KFDA), is to perform the linear discriminant analysis 
in nonlinear feature spaces[7]. Similar to linear 
discriminant analysis, nonlinear discriminant vectors 
are calculated by maximizing
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where 
Φ
bS and 

Φ
tS  is between-group and total 

covariance matrixes, respectively. Then, optimal 
discriminant vectors are given by solving 

ψSψS Φ
t

Φ
b λ=        (4)

There exist coefficients bi such that

       Hαxψ ∑
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where [ ])(,...),( 1 MΦΦ xxH=  and T
1 ),...,( Mbb=α .

The objective of preprocessing or filtering in this 
work is to remove unwanted variation not related to the 
fault patterns. When a preprocessing of the data is 
done, filtered data can improve the performance of 
subsequent tasks such as data representation and 
classification. Here orthogonal signal correction (OSC) 
is used for this purpose[8]. This preprocessing method 
calculates the first principal score vector t from raw 
measurement data X. The score vector t is then 
orthogonalized with respect to group membership Y 
producing correction vector t*: 

.})({ 1* tYYYYIt TT −−=       (6)

Then weight vector wosc is obtained such that 
Xwosc=t*. Finally a new score vector can be calculated: 
t=Xwosc. These tasks are repeated until t has converged. 
A loading vector p is computed, and the correction 
term tpT is subtracted from X giving a residual. The 
next components can be calculated in such a way[8]. 

A triangular representation method was developed to 
extract from raw data useful patterns or features 
efficiently[9]. It has predefined seven components that 
play the role of geometric building-blocks for the 
representation of any data or trends. Such 
representation of a process trend enables us to capture 
important features of data so that unique trajectories or 
maps of process abnormalities can be expressed in 
different magnitude and time duration. Specifically the 
qualitative state of x(t) is defined by x(t), the 1st 
derivative ′  , and the 2nd derivative ′′ [9]. 
There are seven basic triangular components, which are 
determined by ′   and ′′  . The first component 
is called constant because ′ =0 and ′′ =0. It 

represents uniform pattern during that time interval. 
The linear increase (decrease) component means that  
′ =+(-) and ′′ =0. The concave upward and 
monotonic increase (decrease) component is given by 
′ =+(-) and ′′ =+: concave downward and 
monotonic increase (decrease) component ′ =+(-) 
and ′′ =-. 

Fig. 1. Overall framework

As shown in the proposed framework of Fig. 1 raw 
fault data is preprocessed or filtered to eliminate the 
unuseful portion of the data when a fault is detected. 
Then the filtered data is projected onto nonlinear 
KFDA to obtain the scores for the fault data. And the 
extraction of fault pattern is performed, which is 
followed by comparing the extracted fault pattern with 
the existing fault patterns. Finally diagnostic decision 
can be made at that time sequence, and this process 
can be repeated for the next time intervals. 

The fault pattern vector at the jth time x(j) is given 
by x(j)=[x1,x2, ... ,xj]T, where xj is a fault element 
vector xj=[x1i,x2i, ... ,x7i]T. Each of xj should be 0 or 1, 
and the value of 1 represents the presence of the seven 
basic triangular components. For example, suppose that 
the fault patterns are observed as a sequence of 1-2-3 
(i.e., constant, linear increase, and linear decrease).  
The x1 at the 1st sequence is given: x1=[1,0,0,0,0,0,0]T. 
For others x2=[0,1,0,0,0,0,0]T and x3=[0,0,1,0,0,0,0]T. 
Overall, x(3)=[1000000 0100000 0010000]T. On-line 
fault pattern vector x(j) can be compared with off-line 
fault library vectors yk(j) obtained from training data. 
For this purpose, the distance between x(j) and the kth 
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yk(j) is calculated  ∥ ∥ Finally,  a 

diagnosis decision at the jth time is made based on the 
similarity measure, which is given by 

   
 





3. Results

The diagnosis performance of the proposed method 
is demonstrated, in which simulation data obtained 
from the Tennessee Eastman process is utilized. This 
process is a common test-bed for continuous 
processes[10]. It consists of five major units: reactor, 
condenser, separator, compressor, and stripper. The 
reactions in the reactor are as follows:

A+C+D→G, A+C+E→H, and A+E→F+3D→2F. 
This process produces two products (i.e., noted by G 
and H) from four reactants (A, C, D, and E) with inert 
(B) and byproduct (F). A total of 53 process variables 
are measured on-line. The gaseous reactants are fed to 
the reactor, where the liquid products G and H are 
formed. 

In this case study fifteen different faults are tested 
for a performance comparison purpose, which is listed 
in Table 1. 

Fig. 2. A simulation process diagram

For each of the fifteen process faults training and 
test data sets were generated and used as fault library 

and on-line fault data, respectively. As an example, 
Fig. 3 shows control charts for the training data of the 
process fault 1. In these charts, an out-of-control signal 
is detected around the time interval 600. These error 
signal fluctuated quickly up and down during that time 
intervals. 

Table 1. List of process faults
Fault Description

1 A/C feed ratio, B composition constant
2 B composition, A/C ratio constant
3 D feed temperature
4 Reactor cooling water inlet temperature
5 Condenser cooling water inlet temperature
6 A feed loss
7 C header pressure loss
8 A/B/C feed composition
9 D feed temperature
10 C feed temperature
11 Reactor cooling water inlet temperature
12 Condenser cooling water inlet temperature
13 Reaction kinetics
14 Reactor cooling water valve
15 Condenser cooling water valve

The charts on other process faults, though not shown 
here, showed a similar behavior. After the detection of 
the fault it is necessary to find the on-line fault pattern. 
Similarly the on-line fault patterns for the next 
sequences can be determined. 

Fig. 3. A control chart for process fault 1

The on-line pattern vector at the specific time 
should be compared with the existing fault library 
patterns. Finally the similarity values  are obtained for 
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each cause candidate, and a diagnostic decision can be 
made to select as the assignable cause the cause 
candidate with the highest similarity. Table 2 shows 
the results of diagnostic success rate for the simulation 
process. These values of the success rate are obtained 
from the proposed scheme that utilizes filtering and 
fault pattern matching of KFDA scores. In Table 2 the 
success rate (%) of the fifteen faults are listed for the 
training and test data sets. When the true cause of the 
fault is 1, for example, the success rates for the 
training and test data sets of the fault 1 are 98.6% and 
96.9%. It means that only 1.4% and 3.1% of the 
diagnostic decision are incorrect for the training and 
test data, respectively. It should be also noted that the 
success rates for the training data are higher than those 
of the test data. Overall, the proposed scheme produced 
reliable diagnostic results for the data sets: 94.7% 
average success rate for the training data and 92.5% for 
the test data. 

Table 2. Results in success rate

No.
Success Rate (%)

No.
Success Rate (%)

Training Test Training Test
1 98.6 96.9 9 88.3 86.2
2 97.1 96.0 10 89.5 87.0
3 99.0 98.2 11 92.0 89.6
4 98.3 96.7 12 88.1 85.4
5 98.6 96.4 13 93.3 90.9
6 98.8 97.1 14 92.9 90.3
7 99.4 96.3 15 93.6 89.7
8 92.6 90.5 Avg. 94.7 92.5

As shown in Table 3, the results of the success rates 
for the same test data were obtained from two different 
methods of “M1” and “M2”. Here “M3” indicates the 
proposed method, and the success rates of Table 1 are 
reproduced in Table 3. For a comparison purpose, 
“M1” is different with “M3” in that it did not filter the 
raw data prior to performing KFDA and fault pattern 
matching. Similarly “M2” did OSC filtering and 
pattern matching, but utilized linear discriminant 
analysis instead of KFDA. As shown in Table 3 M3 of 
the proposed diagnostic scheme produced the best 
success rates for the fifteen test faults of this work. In 

terms of average success rate, furthermore, M3 yielded 
the highest average value of 92.5% whilst M1 and M2 
is 88.7% and 82.8%, respectively. Thus it can be said 
that the proposed diagnostic scheme outperforms the 
tested methods with linear and no filtering schemes. It 
should be also noted that the performance of M1 is 
better than that of M2 in all the test faults. The effect 
of selecting linear or nonlinear methods is more critical 
in the results than the preprocessing of raw data. It 
may be due to the fact that nonlinear data cannot be  
modeled well by linear methods.  

Table 3. Results of three schemes  

Fault
Sucess rate (%)

M1 M2 M3
1 94.4 88.2 96.9
2 93.1 88.6 96.0
3 95.5 90.8 98.2
4 93.7 89.9 96.7
5 94.6 86.3 96.4
6 87.4 83.9 97.1
7 90.7 83.1 96.3
8 80.0 72.9 90.5
9 83.8 76.3 86.2
10 83.8 79.5 87.0
11 86.0 81.3 89.6
12 82.5 73.9 85.4
13 90.2 85.3 90.9
14 88.1 83.6 90.3
15 86.7 78.1 89.7

Average 88.7 82.8 92.5

4. Conclusion

In this work the efficient representation and 
matching of fault patterns in reduced spaces is 
demonstrated using simulation process data. It does not 
depend on certain mathematical models or expert’s 
knowledge. Only multivariate process data is required 
to make a diagnostic decision. In addition, the 
preprocessing of raw process data was performed in 
order to improve pattern matching results. The 
diagnosis results were obtained and tested from various 
diagnosis schemes. Resultantly it turned out that the 
use of filtering and nonlinear methods produced better 
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performance of diagnosis success rate than others. The 
proposed scheme is easy to implement because it 
requires only historical and on-line measurement data 
of processes. 
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