DOI QR코드

DOI QR Code

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan (Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences) ;
  • Vidovic, Anja (Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences) ;
  • Strauss, Alfred (Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences) ;
  • Matos, Jose (Civil Engineering Department, Campus de Azurem, Minho University) ;
  • Friedl, Norbert (Bridge Construction and Structural Engineering, O BB-Infrastruktur AG)
  • Received : 2017.09.29
  • Accepted : 2018.01.29
  • Published : 2018.03.25

Abstract

The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Keywords

Acknowledgement

Grant : Life - Cycle Assessment for Railway Structures

Supported by : OBB-Infrastruktur Bau AG

References

  1. Abe, M. (2015), "Control system modeling of stock management for civil infrastructure", Smart Struct. Syst., 15(3), 609-625. doi:10.12989/sss.2015.15.3.609
  2. Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., 13(6), 901-925. doi:10.12989/sss.2014.13.6.901
  3. Bocchini, P., Saydam, D. and Frangopol, D.M. (2013), "Efficient, accurate and simple Markov chain model for the life-cycle analysis of bridge groups", Struct. Saf., 40, 51-64. doi:https://doi.org/10.1016/j.strusafe.2012.09.004
  4. Boller, C., Starke, P., Dobmann, G., Kuo, C.M. and Kuo, C.H. (2015), "Approaching the assessment of ageing bridge infrastructure", Smart Struct. Syst., 15(3), 593-608. doi:10.12989/sss.2015.15.3.593
  5. BRIME. (2001), Bridge Management in Europe: Deliverable D14 Final Report; Contract No.: RO-97-SC.2220. Brusseles: Project funded by the European Commission under the Transport RTD Programme of the 4th Framework Programme.
  6. Care, S. (2008), "Effect of temperature on porosity and on chloride diffusion in cement pastes", Constr. Build. Mater., 22(8), 1560-1573. doi: 10.1016/j.conbuildmat.2007.03.018
  7. COST 345. (2004), Procedures required for the assessment of highway infrastructures. Bruxelles: European Research Project under the framwork of European Cooperation in the field of Scientific and Technical Research.
  8. COST TU 1406. (2017), Quality specifications for roadway bridges, standardization at a European level (BridgeSpec). Retrieved from http://www.tu1406.eu/
  9. DARTS (2004), Durable and reliable tunnel structures. Project with financial support of the European Commision under the Fifth Framework Program, GROWTH 2000 Project GRDI-25633.
  10. DuraCRETE (1998), Modelling of degradation: Probabilistic Performance based durability design of concrete structures. EU Project (Brite EuRam III) No. BE95-1347, Report No 4-5.
  11. Ekberg, A. and Paulsson, B. (2010), INNOTRACK - Concluding Technical Report. Paris: International Union of Railways (UIC).
  12. EN 206-1. (2013), Concrete - Part 1: Specification, performance, production and conformity. CEN/TC 104 'Concrete and related products'.
  13. Fagerlund, G. (2004), Strategy for maintenance and rehabilitation in concrete structures; Workpackage 2.3: Evaluation of alternative repair and upgrading options. Lund, Sweden: EC Innovation and SME Programme: IPS-2000-00063.
  14. Feng, M.Q. (2009), "Application of structural health monitoring in civil infrastructure", Smart Struct. Syst., 5(4), 469-482. doi:10.12989/sss.2009.5.4.469
  15. Ferreira, R.M. (2010), "Implications on RC structure performance of model parameter sensitivity: Effect on chlorides", J. Civil Eng. Management, 16(4), 561-566. doi:http://dx.doi.org/10.3846/jcem.2010.62
  16. fib Bulletin 34. (2006), Model Code for Service Life Design of Concrete Structures. Lausanne: International Federation for Structural Concrete (fib).
  17. fib Bulletin 59. (2011), Condition control and assessment of reinforced concrete structures exposed to corrosive environment (carbonation/chlorides). Lausanne: International Federation for Structural Concrete (fib).
  18. fib Bulletin 76. (2015), Benchmarking of deemed-to-satisfy provisions in standards: Durability of reinforced concrete structures exposed to chlorides; Germany: DCC Document Competence Center Siegmar Kastl e. K.
  19. Firouzi, A. and Rahai, A. (2013), "Reliability assessment of concrete bridges subject to corrosion-induced cracks during life cycle using artificial neural networks", Comput.Concrete, 12(1), 91-107. doi:10.12989/cac.2013.12.1.091
  20. Frangopol, D.M. and Soliman, M. (2016), "Life-cycle of structural systems: recent achievements and future directions", Struct. Infrastruct. Eng., 22(1). doi:http://dx.doi.org/10.1080/15732479.2014.999794
  21. Gattulli, V. and Chiaramonte, L. (2005), "Condition assessment by visual inspection for a bridge management system", Comput.-aided Civil Infrastruct. Eng., 20(2), 95-107. doi:10.1111/j.1467-8667.2005.00379.x
  22. Gehlen, C. (2000), Probability-based service life design of reinforced concrete structures - Reliability studies for prevention of reinforced corrosion. Berlin, Beuth: DAfStb Heft 510, (in German).
  23. Ghodoosi, F., Bagchi, A., Zayed, T. and Zaki, A.R. (2014), "Reliability-based condition assessment of a deteriorated concrete bridge", Struct. Monit. Maint., 1(4), 357-369. doi:10.12989/smm.2014.1.4.357
  24. Grossberger, H. (2014), Doctoral thesis: Framework for Lifecycle Assessment of Engineering Structures. Vienna: University of Natural Resources and Life Sciences, Vienna, Austria.
  25. Hakim, S.J. and Abdul Razak, H. (2014), "Modal parameters based structural damage detection using artificial neural networks - a review", Smart Struct.Syst., 14(2), 159-189. doi:10.12989/sss.2014.14.2.159
  26. Hallberg, D. and Racutanu, G. (2007), "Development of the Swedish bridge management system by introducing a LMS concept", Mater. Struct., 627-639. doi:10.1617/s11527-006-9175-z
  27. Hasan, M.S., Setunge, S., Law, D.W. and Koay, Y.C. (2015), "Forecasting deterioration of bridge components from visual inspection data", Int. J. Eng. Technol., 7(1), 40-44. doi:10.7763/IJET.2015.V7.763
  28. Hunkeler, F. (2012), Anforderungen an den Karbonatisierungswiderstand von Betonen. Forschungsauftrag AGB 2008/012 auf Antrag der Arbeitsgruppe Bruckenforschung (AGB), Zurich.
  29. Liu, M. and Frangopol, D.M. (2006), "Optimizing bridge network maintenance management under uncertainty with conflicting criteria: life-cycle maintenance, failure, and user costs", J. Struct. Eng., 132(11), 1835-1845. doi:https://doi.org/10.1061/(ASCE)07339445(2006)132:11(1835)
  30. Maekawa, K., Ishida, T. and Kishi, T. (2003), "Multi-scale modeling of concrete performance: Integrated Material and Structural Mechanics", J. Adv. Concrete Technol., 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  31. Marzouk, M.M., Hisham, M. and Al-Gahtani, K. (2014), "Application of bridge information modeling in bridges life cycle", Smart Struct. Syst., 13(3), 407-418. doi:10.12989/sss.2014.13.3.407
  32. Matthews, S. (2007), "CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures", J. Build. Appraisal, 3(1), 6-20. doi:doi:10.1057/palgrave.jba.2950063
  33. Mirzaei, Z., Adey, B.T., Klatter, L. and Thompson, P.D. (2014), "The IABMAS bridge management committee overview of existing bridge management system", 2014 International Association for Bridge Maintenance and Safety - IABMAS.
  34. Model Code for Concrete Structures. (2010), Berlin: The International Federation for Structural Concrete; Wilhelm Ernst & Sohn.
  35. Njardardottir, H., McCabe, B. and Thomas, M.D. (2005), "Concrete bridge deck deterioration model using belief networks" Comput. Concrete, 2(6), 439-454. doi:10.12989/cac.2005.2.6.439
  36. OEBB Infrastruktur Regelwerk 06.01.02. (2012), "Instandhaltungsplan Konstruktiver Ingenieurbau" [Maintenance plan for structural engineering construction]. Vienna.
  37. ONORM B 3310. (1963), Portlandzement, Eisenportlandzement und Hochofenzement [Portland cement, Portland-slag cement and Blastfurnace cement]. Vienna: Osterreichisches Normungsinstitut.
  38. ONORM B 3310. (1980), Portlandzement, Eisenportlandzement und Hochofenzement [Portland cement, Portland-slag cement and Blastfurnace cement]. Vienna: Osterreichisches Normungsinstitut.
  39. ONORM B 3310. (1993), Zement fur Bauzwecke [Cement for building purposes]. Austrian Standards Institute.
  40. ONORM B 4710-1. (2004), Teil 1: Festlegung, Herstellung, Verwendung und Konformitatsnachweis [Concrete - Part 1: Specification, production, use and verification of conformity]. Vienna: Austrian Standards Institute.
  41. PANTURA. (2011), D5.3 Needs for maintenance and refurbishment of bridges in urban environments - Management of bridges for strengthening and repair. Co-financed by the European Commission.
  42. Papadakis, V.G. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration.", Adv. Concrete Constr., 1(3), 201-213. doi:10.12989/acc2013.1.3.201
  43. Papadakis, V.G., Efstathiou, M.P. and Apostolopoulos, C.A. (2007), "Computer-aided approach of parameters influencing concrete service life and field validation", Comput. Concrete, 4(1), 1-18. doi:10.12989/cac.2007.4.1.001
  44. Pellegrino, C., Pipinato, A. and Modena, C. (2011), "A simplified management procedure for bridge network maintenance", Struct. Infrastruct. E., 7(5), 341-351. doi:10.1080/15732470802659084
  45. Puz, G. and Radic, J. (2011), "Life-cycle performance model based on homogeneous Markov processes", Struct. Infrastruct. Eng., 7(4), 285-294. doi:10.1080/15732470802532943
  46. Rucker, W., Hille, F. and Rohrmann, R. (2006), SAMCO Final Report - Guideline for the Assessment of Existing Structures. Berlin: Federal Institute of Materials Research and Testing (BAM).
  47. Salokangas, L. (2013), ETSI Project - Bridge Life Cycle Optimisation: Stage 3. Helsinki: Aalto University publication series Science + Technology 4/2013.
  48. SAMARIS. (2005), Sustainable and advanced materials for road infrastructure. Final report, VI Framework Programme. Brussels.
  49. Shin, K.J., Kim, J.S. and Lee, K.M. (2011), "Probability-based durability design software for concrete structures subjected to chloride exposed environments", Comput. Concrete, 8(5), 511-524. doi:10.12989/cac.2011.8.5.511
  50. Sisomphon, K. and Franke, L. (2007), "Carbonation rates of concretes containing high Volume of pozzolanic materials", Cement Concrete Res., 37, 1647-1653. doi:10.1016/j.cemconres.2007.08.014
  51. Strauss, A., Wendner, R., Frangopol, D.M. and Bergmeister, K. (2012), "Influence line- model correction approach for the assessment of engineering structures using novel monitoring techniques", Smart Struct. Syst., 9(1), 1-20. doi:10.12989/sss.2012.9.1.001
  52. Tanasic, N. (2016), Data collection on Bridge Management Systems. COST TU 1406 Quality Specification for Roadway Bridges, Standardization at a European Level - 2nd Workshoop Meeting. Belgrade.
  53. Tang, L. (1996), Chloride transport in concrete - measurement and prediction. PhD Thesis. Chalmers University of Technology. Gothenburg, Sweden.
  54. Tang, L., Utgenannt, P., Lindvall, A. and Boubitsas, D. (2010), Validation of models and test methods for assessment of durability of concrete structures in road environment. Uppdragsrapport $N^{\circ}P802606$, Lund, Sweden.
  55. Yuan, Q., Shi, C., Schutter, G. and Audenaert, K. (2008), Effect of temperature on transport of chloride ions in concrete. In: (Eds., Alexander, M.G., Beushausen, H.D., Dehn, F. and Moyo, P.). Proceedings of the 2nd international conference on concrete repair, rehabilitation, and retrofitting, Cape Town.
  56. von Greve-Dierfeld, S. and Gehlen, C. (2016a), "Performance based durability design, carbonation part 1 - Benchmarking of European present design rules", Struct. Concrete, 17(3), 309-328. doi:10.1002/suco.201600066
  57. von Greve-Dierfeld, S. and Gehlen, C. (2016b), "Performance based durability design, carbonation part 2 - Classification of concrete", Struct. Concrete, 17(4), 523-532. doi:10.1002/suco.201600067
  58. von Greve-Dierfeld, S. and Gehlen, C. (2016c), "Performance based durability design, carbonation part 3: PSF approach and a proposal for the revision of deemed-to-satisfy rules", Struct. Concrete, 17(5), 718-728. doi:10.1002/suco.201600085
  59. VOZ. (1985), Vereinigung Osterreichischer Zementindustrie: Zement und Beton [Cement and Concrete]. Vienna: Bauberatungsstelle des Vereins der Osterreichischen Zementfabrikanten und des Osterreichischen Betonvereins.
  60. Vu, K.A. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22(4), 313-333. doi:10.1016/S0167-4730(00)00018-7
  61. Zambon, I., Vidovic, A., Strauss, A., Matos, J. and Amado, J. (2017), "Comparison of stochastic prediction models based on visual inspections of bridge decks", J. Civil Eng. Management, 23(5), 553-561. doi:http://dx.doi.org/10.3846/13923730.2017.1323795
  62. ZAMG. (2017), Zentralanstalt fur Meteorologie und Geodynamik [Central Institute of Meteorology and Geodynamics]. Retrieved from https://www.zamg.ac.at/cms/de/wetter/wetter-oesterreich
  63. Zanini, M. A., Faleschini, F. and Pellegrino, C. (2017), "Bridge residual service-life prediction through Bayesian visual inspection and data updating", Struct. Infrastruct. E., 13(7), 906-917. https://doi.org/10.1080/15732479.2016.1225311

Cited by

  1. Condition Prediction of Existing Concrete Bridges as a Combination of Visual Inspection and Analytical Models of Deterioration vol.9, pp.1, 2019, https://doi.org/10.3390/app9010148
  2. Value of Information (VoI) for the Chloride Content in Reinforced Concrete Bridges vol.10, pp.2, 2018, https://doi.org/10.3390/app10020567
  3. Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution vol.9, pp.3, 2018, https://doi.org/10.12989/acc.2020.9.3.257
  4. Climatic Issue in an Advanced Numerical Modeling of Concrete Carbonation vol.13, pp.11, 2018, https://doi.org/10.3390/su13115994