DOI QR코드

DOI QR Code

Characterization of Hexagonal Tungsten Bronze CsxWO3 Nanoparticles and Their Thin Films Prepared by Chemical Coprecipitation and Wet-Coating Methods

  • 투고 : 2018.01.11
  • 심사 : 2018.01.27
  • 발행 : 2018.04.20

초록

The hexagonal tungsten bronze $Cs_xWO_3$ nanoparticle was synthesized by a chemical coprecipitation method of ammonium tungstate and $Cs_2CO_3$ in acidic condition. This synthetic method for cesium tungsten bronze is reported for the first time as far as we know. The synthesized $Cs_xWO_3$ as precipitated showed a weak crystallinity of hexagonal unit cell with a crystallite size of about 4 nm without annealing. When the synthesized $Cs_xWO_3$ was annealed in $N_2$ atmosphere, the crystallinity and crystallite size systematically increased maintaining the typical hexagonal tungsten bronze structure as the annealing temperature increased. The analyzed Cs content in the bronze was about 0.3 vs W, which is very close to the theoretical maximum value, 1/3 in cesium tungsten bronze. According to XPS analysis, the reduced tungsten ions existed as both the forms of $W^{5+}$ and $W^{4+}$ and the contents systematically increased as the annealing temperature increased up to $800^{\circ}C$. The $Cs_xWO_3$ thin films on PET substrate were also prepared by a wet-coating method using the ball-milled solution of the annealed $Cs_xWO_3$ nanoparticles at various temperatures. The near-infrared shielding property of these thin films increased systematically as the annealing temperature increased up to $800^{\circ}C$ as expected with the increased contents of reduced tungsten ions.

키워드

참고문헌

  1. (a) Granqvist, C. G. Electrochim. Acta 1999, 44, 3005. https://doi.org/10.1016/S0013-4686(99)00016-X
  2. (b) Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2000, 60, 201. https://doi.org/10.1016/S0927-0248(99)00088-4
  3. Sun, M.; Xu, N.; Cao. Y. W.; Yao, J. M.; Wang, E. G. J. Mater. Res. 2000, 15, 927. https://doi.org/10.1557/JMR.2000.0132
  4. Schweiger, C.; Georg, A.; Graf, W.; Wittwer, V. Sol. Energy Mater. Sol. Cells 1998, 54, 99 https://doi.org/10.1016/S0927-0248(98)00060-9
  5. Faughnan, B. H.; Crandall, R. S.; Heyman, P. M. RCA Rev. 1975, 36, 177.
  6. Deneuville, A.; Gerard, P. J. Electron. Mater. 1978, 7, 559. https://doi.org/10.1007/BF02655419
  7. (a) Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 12, 4059.
  8. (b) Yang, C.; Chen, J.-F.; Zeng, X.; Cheng, D.; Cao, D. Ind. Eng. Chem. Res. 2014.
  9. Machida, K.; Tofuku, A.; Adachi, K. Handbook of Functional Nanomaterials; Aliofkhazraei, M., Ed.; Nova Science Publishers: 2013; Vol. 1, pp 199-220.
  10. (a) Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. J. Mater. Chem. C 2015, 3, 8050. https://doi.org/10.1039/C5TC01411E
  11. (b) Lee, J.-S.; Liu, H.-C.; Peng, G.-D.; Tseng, Y. J. Cryst. Growth 2017, 465, 27. https://doi.org/10.1016/j.jcrysgro.2017.02.044
  12. (a) Liu, J. X.; Ando, Y.; Dong, X. L.; Shi, F.; Yin, S.; Adachi, K. J. Solid State Chem. 2010, 183, 2456. https://doi.org/10.1016/j.jssc.2010.08.017
  13. (b) Gao, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T. Sato, T. J. Mater. Chem. 2010, 20, 8227. https://doi.org/10.1039/c0jm01972k
  14. (c) Gao, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Chem. Comm. 2011, 47, 8853. https://doi.org/10.1039/c1cc12711j
  15. (d) Liu, J.-X.; Shi, F.; Dong, X.-L.; Yin, S.; Sato, T. Mater. Character. 2013, 84, 182. https://doi.org/10.1016/j.matchar.2013.08.001
  16. (e) Liu, J.; Xu, Q.; Shi, F.; Liu, S.; Luo, J.; Bao, L.; Feng, X. App. Surf. Sci. 2014, 309, 175. https://doi.org/10.1016/j.apsusc.2014.05.005
  17. (f) Xu, Q.; Liu, J.; Shi, F.; Luo, J.; Jiang, Y.; Liu, G. Adv. Mater. Res. 2013, 712-715, 284. https://doi.org/10.4028/www.scientific.net/AMR.712-715.284
  18. (g) Shi, F.; Liu, J.; Dong, X.; Xu, Q.; Luo, J.; Ma, H. J. Mater. Sci. Technol. 2014, 30, 342. https://doi.org/10.1016/j.jmst.2013.08.018
  19. Supothina, S.; Seeharaj, P.; Yoriya, S.; Sriyudthsak, M. Ceram. Int. 2007, 33, 931. https://doi.org/10.1016/j.ceramint.2006.02.007
  20. Lee, K.-S.; Seo, D.-K.; Whangbo, M.-H. J. Am. Chem. Soc. 1997, 119, 4043. https://doi.org/10.1021/ja964455t
  21. JCPDS 83-1334.