DOI QR코드

DOI QR Code

Synthesis of ceria by combination of spray pyrolysis, postheat, and ball-milling and its characterization

분무열분해, 후소성 및 볼밀링을 조합한 방법을 이용한 세리아의 합성 및 특성연구

  • Kim, Hyun-Ik (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Kim, Sang Pil (Hannam University, Industry-Academic Cooperation Foundation) ;
  • Song, Jae-Kyung (Konkuk University, Industry-Academic Cooperation Foundation) ;
  • Kim, Sang Hern (Department of Chemical & Biological Engineering, Hanbat National University)
  • 김현익 (한밭대학교 화학생명공학과) ;
  • 김상필 (한남대학교 링크 플러스 사업단) ;
  • 송재경 (건국대학교 링크플러스 사업단) ;
  • 김상헌 (한밭대학교 화학생명공학과)
  • Received : 2018.11.12
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

In this study, micro-sized $CeO_2$ particles were synthesized by spray pyrolysis, and EG(ethylene glycol) and CA(citric acid) as organic additives were added to obtain hollow and porous particle during spray pyrolysis, and characteristics of obtained ceria were investigated according to the amount of added organic additives. Spray pyrolysis, postheat and ball-milling were combined to give 6 paths. $CeO_2$ nano-sized particle was obtained by the path which has sequence of Spray Pyrolysis with 0.5 M of EG and CA${\rightarrow}$Post-heat${\rightarrow}$Ball-milling${\rightarrow}$Post-heat among 6 paths. The average particle size(24 nm with standard deviation of 3.8 nm) of $CeO_2$ nano-sized particle by TEM analysis is close to the primary particle size(20 nm) which was calculated by Debye-Scherrer equation. To investigate the morphological characteristics and structure of the synthesized nanoparticle powders, SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) and TEM(Transmission Electron Microscopy) were used.

세리아 입자의 합성을 위하여 분무열분해 시 유기 첨가제인 EG(ethylene glycol)과 CA(citric acid)를 첨가하여 중공성 및 다공성을 갖는 $CeO_2$ 마이크로 크기의 입자를 제조하였으며 첨가량에 따른 특성을 비교하였다. 분무열분해과정, 후소성 및 볼밀링 과정을 적절히 조합하여 만든 6가지 경로에 의해 나노 크기의 세리아 입자를 합성하였다. 6가지 경로 중 EG 및 CA가 0.05M 첨가된 Ce(III)가 전구체 수용액을 이용하여 분무열분해${\rightarrow}$후소성${\rightarrow}$볼밀링${\rightarrow}$후소성의 경로에 의해 얻어진 $CeO_2$ 입자에 대해 TEM 분석으로 측정한 입자의 평균 크기 24 nm(편차=3.8 nm)는 Debye-Scherrer식에 의해 계산된 1차 입자의 크기(20 nm)와 가장 유사한 크기를 나타내었다. 제조된 나노입자분말의 형태적 및 구조적 특성을 알아보기 위하여 SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) 및 TEM(Transmission Electron Microscopy)을 통하여 특성을 분석하였다.

Keywords

HGOHBI_2018_v35n4_1057_f0001.png 이미지

Fig. 1. Experimental process for fabrication of nano-sized ceria.

HGOHBI_2018_v35n4_1057_f0002.png 이미지

Fig. 2. SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution.

HGOHBI_2018_v35n4_1057_f0003.png 이미지

Fig. 3 SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and after ball-milling for 24 hours.

HGOHBI_2018_v35n4_1057_f0004.png 이미지

Fig. 4. SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and after ball-milling, and post heat.

HGOHBI_2018_v35n4_1057_f0005.png 이미지

Fig. 5. SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and postheat(PH) at 800℃ for 1 hour

HGOHBI_2018_v35n4_1057_f0006.png 이미지

Fig. 6. SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and postheat(PH) at 800℃ for 1 hour and ball-milling 24 hours.

HGOHBI_2018_v35n4_1057_f0007.png 이미지

Fig. 7. SEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and postheat(PH) at 800℃ for 1 hour and ball-milling 24 hours, and postheat(PH) at 800℃ again.

HGOHBI_2018_v35n4_1057_f0008.png 이미지

Fig. 8. XRD patterns of CeO2 synthesized by path ① (Spray Pyrolysis(SP)) and path ④(Spray Pyrolysis(SP)→Postheat(PH)).

HGOHBI_2018_v35n4_1057_f0009.png 이미지

Fig. 9. XRD patterns of CeO2 synthesized by Path ⑥ (Spray Pyrolysis(SP)→ Postheat(PH)→Ball-milling(BM)→Postheat(PH))

HGOHBI_2018_v35n4_1057_f0010.png 이미지

Fig. 10. TEM images of CeO2 according to the concentrations of EG and CA by spray pyrolysis of Ce(III)(NO3)3 precursor aqueous solution and postheat(PH) at 800℃ for 1 hour and ball-milling 24 hours, and postheat(PH) at 800℃ again.

Table 1. Various combined paths for obtaining nano-sized ceria

HGOHBI_2018_v35n4_1057_t0001.png 이미지

Table 2. Sizes of primary particle by Debye-Scherrer for path ⑥ (Spray Pyrolysis(SP)→Postheat(PH)→Ball-milling(BM)→Postheat(PH))

HGOHBI_2018_v35n4_1057_t0002.png 이미지

References

  1. Z. Liu, D. Ding, M. Liu, X. Ding, D. Chen, X. Li, C. Xia, M. Liu, High-performance, "Ceria-based solid oxide fuel cells fabricated at low temperatures", J. Power Sour., Vol. 241, pp. 454-459, (2013). https://doi.org/10.1016/j.jpowsour.2013.04.130
  2. T. Itoh, T. Uchida, N. Izu, I. Matsubara, W. Shin, "Effect of core-shell ceria/poly(vinylpyrrolidone)(PVP) nanoparticles incorporated in polymer films and their optical properties", J. Mater., Vol. 6, pp. 2119-2129, (2013). https://doi.org/10.3390/ma6062119
  3. J. F. de Lima, R. F. Martins, O. A. Serra, "Transparent UV-absorbers thin films of zinc oxide: ceria system synthesized via sol-gel process", J. Opt. Mater., Vol. 35, pp. 56-60, (2012). https://doi.org/10.1016/j.optmat.2012.06.016
  4. C. Y. Chen, K. H. Chang, "Temperature independent resistive oxygen sensor prepared using zirconia-doped ceria powders", J. Sens. Actuators B: Chem., Vol. 162, pp. 68-75, (2012). https://doi.org/10.1016/j.snb.2011.12.036
  5. G. Vilee, B. Bridier, J. Wichert, J. P. Ramiirez, "Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins", Angew. Chem, Int. Ed., Vol. 51, pp. 8620-8623, (2012). https://doi.org/10.1002/anie.201203675
  6. A. Alijani, A. Irankhah, "Effect of nickel addition on ceria-supported platinum catalysts for medium-temperature shift reaction in fuel processors", J. Chem. Eng. Technol., Vol. 36, No.4, pp. 552-558, (2013). https://doi.org/10.1002/ceat.201200632
  7. C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud, M. S. Doescher, and D. R. Rolison, "Sol-Gel-Derived Ceria Nanoarchitectures: Synthesis, Characterization, and Electrical Properties", Chem. Mater., Vol. 18, pp. 50-58, (2006). https://doi.org/10.1021/cm051385t
  8. E. A. Trusova, A. A. Khrushcheva, K. V. Vokhmintcev, "Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics", Journal of the European Ceramic Society, Vol. 32, No. 9, pp. 1977-1981, (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.006
  9. M. Rumruangwong, S. Wongkasemjit, "Synthesis of ceria-zirconia mixed oxide from cerium and zirconium glycolates via sol-gel process and its reduction property", Applied Organometallic Chemistry, Vol. 20, No. 10, pp. 615-625, (2006). https://doi.org/10.1002/aoc.1106
  10. B. Li, X. Wei, W. Pan, "Synthesis of doped ceria-zirconia core-shell nanocomposites via sol-gel process", Journal of Power Sources, Vol. 193, No. 2, pp. 598-601, (2009). https://doi.org/10.1016/j.jpowsour.2009.04.050
  11. Jong-Young Kim, Ung-Soo Kim, Woo-Seok Cho, "Synthesis of Ceria Nanosphere by Ultrasonic Spray Pyrolysis", Journal of the Korean Ceramic Society, Vol. 46, No.3, pp. 249-252, (2009). https://doi.org/10.4191/KCERS.2009.46.3.249
  12. C. M. Halmenschlager, R. Neagu, L. Rose, C. F. Malfatti, C. P. Bergmann, "Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film", Materials Research Bulletin, Vol. 48, No. 2, pp. 207-213, (2013). https://doi.org/10.1016/j.materresbull.2012.09.073
  13. Shao-Ju Shih, Ying-Ying Wu, Chin-Yi Chen, Chin-Yang Yu, "Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis", Procedia Engineering, Vol. 36, pp. 186-194, (2012). https://doi.org/10.1016/j.proeng.2012.03.029
  14. D.-H. Kim, H.-G. Kang, S.-K. Kim, U. Paik, J.-G. Park, "Effect of Calcination Process on Synthesis of Ceria Particles, and Its Influence on Shallow Trench Isolation Chemical Mechanical Planarization Performance", Japanese Journal of Applied Physics, Vol. 45, No.6, pp. 4893-4897, (2006). https://doi.org/10.1143/JJAP.45.4893
  15. B. Matovic, J. Dukic, B. Babic, D. Bucevac, Z. Dohcevic-Mitrovic, M. Radovic, S. Boskovic, "Synthesis, calcination and characterization of Nanosized ceria powders by self-propagating room temperature method", Ceramics International, Vol. 39, No. 5, pp. 5007-5012, (2013). https://doi.org/10.1016/j.ceramint.2012.11.098
  16. M. Lundberg, B. Skarman, F. Cesar, L. R. Wallenberg, "Mesoporous thin films of high-surface-area crystalline cerium dioxide", Microporous and Mesoporous Materials, Vol. 54, pp. 97-103, (2002). https://doi.org/10.1016/S1387-1811(02)00356-6
  17. F. Heidari, A. Irankhahn, "Effect of surfactants and digestion time on nano crystalline cerium oxide characteristics synthesized by differential precipitation", Ceramics International, Vol. 40, pp. 12655-12660, (2014). https://doi.org/10.1016/j.ceramint.2014.04.112
  18. Huey-Ing Chen, Hung-Yi Chang, "Synthesis of nanocrystalline cerium oxide particles by the precipitation method", Ceramics International, Vol. 31, pp. 795-802, (2005). https://doi.org/10.1016/j.ceramint.2004.09.006
  19. J. J. Ketzial and A. S. Nesaraj, "Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a surfactant on the distribution of particle sizes", Journal of Ceramic Processing Research, Vol. 12, No. 1, pp. 74-79, (2011).
  20. H. Li, G. Lu, Q. Dai, Y. Wang, Y. Guo, and Y. Guo, "Hierarchical Organization and Catalytic Activity of High-Surface-Area Mesoporous Ceria Microspheres Prepared Via Hydrothermal Routes", Applied Materials and Interfaces, Vol. 2, No. 3, pp. 838-846, (2010). https://doi.org/10.1021/am900829y
  21. T. Taniguchi, Ken-ichi Katsumata, S. Omata, K. Okada, and N. Matsushita, "Tuning Growth Modes of Ceria-Based Nanocubes by a Hydrothermal Method", Cryst. Growth Des., Vol. 11, pp. 3754-3760, (2011) https://doi.org/10.1021/cg101585b
  22. Jin-Seok Lee, Sung-Churl Choi, "Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of $H_2O_2$ and $NH_4OH$ Materials", Material Letters, Vol. 58, pp. 390-393, (2004). https://doi.org/10.1016/S0167-577X(03)00508-1