DOI QR코드

DOI QR Code

흐름형 반응기 내에서 액체연료의 흡열반응촉매 종류에 따른 비활성화 정도에 대한 연구

Study on the Deactivation Trends of Liquid Fuel According to the Types of Endothermic Catalyst in Flow Reactor

  • Lee, Tae Ho (Department of Chemical & Biological Engineering, Korea University) ;
  • Jeon, Sunbin (Department of Chemical & Biological Engineering, Korea University) ;
  • Kim, Sung Hyun (Department of Chemical & Biological Engineering, Korea University) ;
  • Jeong, Byung Hun (The 4th R&D Institute - 5th Directorate, Agency for Defense Development) ;
  • Han, Jeong Sik (The 4th R&D Institute - 5th Directorate, Agency for Defense Development)
  • 투고 : 2017.11.16
  • 심사 : 2018.07.21
  • 발행 : 2018.10.01

초록

극초음속 비행체에서는 공기와의 마찰열과 엔진열의 증가로 기체 내부의 열적 부하가 발생한다. 이는 비행체 내부 구조물의 변형을 일으키고 오작동을 발생시킬 수 있다. 흡열연료는 액체 탄화수소 연료로써 흡열반응을 통해 열을 흡수할 수 있는 연료이다. 본 연구에서는 실제 반응조건과 비슷한 고정층 흐름형 반응기에서 Exo-tetrahydrodicyclopentadiene(exo-THDCP)를 연료로 사용하여 흡열 촉매 종류에 따른 흡열 반응 시 생성물, 코크 생성량과 촉매 특성 변화 간 관계에 대한 연구를 수행하였다.

In hypersonic aircraft, increase of aerodynamic and engine heat lead thermal load in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which absorb the heat load by undergoing endothermic reactions. In this study, we investigated the relationship between product, coke formation and catalytic properites of endothermic catalysts by using exo-tetrahydrodicyclopentadiene as a fuel in a fixed bed flow reactor similar to the actual reaction conditions.

키워드

참고문헌

  1. D.R. Sobel, and L.J. Spadaccini, “Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion,” Journal of Engineering for Gas Turbines and Power, Vol. 119, No. 2, pp. 344-351, 1997. https://doi.org/10.1115/1.2815581
  2. Hyeon, D.H., Kim, J.Y., Chun, B.H., Kim, S.H., Jeong, B.H. and Han, J.S., “Improvement of Heat of Reaction of Jet Fuel Using Pore Structure Controlled Zeolite Catalyst,” Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 5, pp. 95-100, 2014. https://doi.org/10.6108/KSPE.2014.18.5.095
  3. J.A. Moulijn, A.E van Diepen, and F. Kapteijin., “Catalyst Deactivation: is it Predictable? What to do?,” Applied Catalysis A: General, Vol. 212, No. 30, pp. 3-16, 2001. https://doi.org/10.1016/S0926-860X(00)00842-5
  4. Petley, D., Jones, S. and Dziedzic, W., "Analysis of Cooling Systems for Hyersonic Aircraft," 3rd international Aerospace Planes Conference, Orlando, F.L., U.S.A., AIAA 91-5063, December 1991.
  5. Z. Wang, Y.s. Guo, and R.S. Lin, "Pyrolysis of Hydrocarbon Fuel ZH-100 Under Different Pressures," Journal of Analytic and Applied Pyrolysis, Vol. 85, Issues 1-2, pp. 534-538, 2009. https://doi.org/10.1016/j.jaap.2009.01.009
  6. J. Qin, S. Zhang, W. Bao, W. Zhou, and D. Yu., “Thermal Management Method of Fuel in Advanced Aeroengines,” Energy, Vol. 49, No. 1, pp. 459-468, 2012.
  7. S. Chen and G. Manos, "Study of Coke and Coke Precursors During Catalytic Cracking of n-Hexane and 1-Hexene over Ultrastable Y Zeolite," Catalyst Letters, Vol. 96, Issue 3-4, pp. 195-200, 2004. https://doi.org/10.1023/B:CATL.0000030120.29538.5d