DOI QR코드

DOI QR Code

A Numerical Study on Performance Characteristics of STED with various Pressure Ratios and Cone Shapes using Burnt Gas Properties

연소가스 물성을 이용한 이차목 디퓨저의 압력비와 램 구조물 형상에 따른 성능 특성에 대한 수치적 연구

  • Yu, Seongha (School of Mechanical Engineering, Chungnam National University) ;
  • Jo, Seonghwi (School of Mechanical Engineering, Chungnam National University) ;
  • Kim, Hongjip (School of Mechanical Engineering, Chungnam National University) ;
  • Ko, Youngsung (School of Aerospace Engineering, Chungnam National University) ;
  • Na, Jaejeong (The 4th R&D Institute - 5th Directorate, Agency for Defense Development)
  • Received : 2017.11.14
  • Accepted : 2018.04.23
  • Published : 2018.10.01

Abstract

A numerical study was conducted to investigate the performance characteristics of a STED with various pressure ratios (PRs) and cone shapes. Due to momentum loss, the pressure in vacuum chamber increased with cone angle for a PR of 75. Also, the STED is started between PRs of 36 and 37 in the case of a cone angle of $15^{\circ}$ and a blockage ratio (BR) of 15%. The results for various PRs and cone shapes are presented, and the optimal cone shape is found to have a cone angle of between $5{\sim}20^{\circ}$ and a BR of between 15~40%.

연소가스를 이용하여 압력비와 램 구조물의 형상에 따른 이차목 디퓨저의 성능 특성에 대한 수치적 연구를 수행하였다. 작동 조건인 압력비 75에서 램 구조물의 각도가 커짐에 따라 유동의 모멘텀 감소로 인해 진공실 압력이 상승하였다. 또한, 램 구조물의 반각 $15^{\circ}$, 폐색율 15%일 때, 디퓨저는 압력비 36과 37 사이에서 시동되었다. 이를 토대로 다양한 압력비와 램 구조물 형상에 따른 최적의 램 구조물 형상은 반각 $5{\sim}20^{\circ}$, 폐색율 15~40%로 판단된다.

Keywords

References

  1. Lee, Y. J., Kang, S. H., Oh, J. H. and Yang, S. S., “Development of the Scramjet engine Test Facility(SeTF) in Korea Aerospace Research Institute,” Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 3, pp. 69-78, 2010.
  2. Sung, H. G., Kim, I. S., Lee, K. J., Kim, K. M. and Lee, D. H., "Design Method and Preliminary Data Analysis of Subscale Direct-Connect Test facility for Liquid Ramjet Combustor (I)," 20th KSPE Spring Conference, Andong, Korea, pp. 59-63, May 2003.
  3. Lee, H. J., Lee, B. J., Kim, S. H. and Jeung, I. S., “Design/Construction and Performance Test of Hypersonic Shock Tunnel : Part II : Construction and Performance Test of Hypersonic Shock Tunnel,” Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 4, pp. 328-336, 2008. https://doi.org/10.5139/JKSAS.2008.36.4.328
  4. Kim, M. H., Lee, M. Y., Kim, J. S., Choi, C. H., Seo, J. H, Moon, S. Y. and Hong, B. G., “Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4MW,” Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 9, pp. 700-707, 2013. https://doi.org/10.5139/JKSAS.2013.41.9.700
  5. Sung, H. G., Yeom, H. W., Yoon, S. K., Kim, S. J. and Kim, J. G., “Investigation of Rocket Exhaust Diffusers for Altitude Simulation,” Journal of Propulsion and Power, Vol. 26, No. 2, pp. 240-247, 2010. https://doi.org/10.2514/1.46226
  6. Kang, S. I. and Huh, H. I., “A CFD Study for Rocket Exhaust Flow Using Single Species, Unreacted Flow Model,” Aerospace Engineering and Technology, Vol. 11, No. 1, pp. 126-134, 2012.
  7. Gordon S. and Mcbridge B. J., "Computer program for calculation of complex chemical equilibrium compositions and applications", NASA RP-1311, 1996.
  8. Y. Bartosiewicz, Zine Aidoun, P. Desevaux and Yves Mercadier, "Numerical and experimental investigations on supersonic ejectors," International Journal of Heat and Fluid Flow, Vol. 26, No. 1, pp.56-70, 2005. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.003
  9. Ansys V14, "Fluent User's Guide," ANSYS, Inc., Canonsburg, P.A., U.S.A., 2011.