DOI QR코드

DOI QR Code

온도 상승에 따른 콩 종실의 무기영양과 단백질 및 지방 함량 평가

The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)]

  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조현숙 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Lee, Yun-Ho (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Hyeoun-Suk (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyong (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (Crop physiology and production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop physiology and production, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2018.09.03
  • 심사 : 2018.11.07
  • 발행 : 2018.12.31

초록

온도는 콩 종실의 무기영양과 단백질 및 지방함량에 영향을 주는 환경요인 중의 하나이다. 본 연구는 향후 이상고온 현상을 대비하여 자연 조건과 가장 유사하게 만들어진 온도구배 챔버에 종실비대기에서 성숙기까지 콩 종실의 무기영양과 단백질 및 지방함량 변화에 대한 연구를 수행하였다. 1. 대원콩과 풍산나물콩은 온도 상승에 따라 성숙기에 질소를 제외한 다른 무기영양은 유의한 차이를 보이지 않았다. 2. 성숙기의 단백질 함량에 있어서 대원콩은 상승된 온도에 다소 감소를 하였다. 그러나 지방 함량은 대원콩이 상승된 온도인 Ta+4에서 증가 하였으나, 풍산나물콩은 감소하였다. 3. 100립의 무게가 증가 할수록 풍산물콩은 단백질 함량이 증가 하였고, 대원콩은 지방 함량이 증가 하였다. 4. 온도 상승은 종실의 이화학적 성분들을 변화 시킬 수 있다. 이상기상으로 온도가 지속적으로 상승 되었을 때 작물의 생육과 수량에 미치는 영향도 중요하지만, 인간의 음식섭취에 있어 미네랄과 단백질 그리고 지방함량과 같은 영양소 변화에 대한 대처도 중요 할 것이다.

The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars (Daewonkong and Pungsannamulkong during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), $Ta+1^{\circ}C$ (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), and $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at $Ta+4^{\circ}C$. The oil content was the highest at $Ta+4^{\circ}C$ in DWK, whereas it decreased in PSNK at $Ta+4^{\circ}C$. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future.

키워드

참고문헌

  1. Bellaloui, N., Y. Hu, A. Mengistu, H. K. Abbas, M. A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral, 15N and 13 C dynamics in soybean genotypes under controlled environments. Atlas Journal Plant Biology 4 : 56-65.
  2. Dornbos, D. L JR. and R. E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. Journal of the American Oil Chemists’ Society 69(3) : 228-231. https://doi.org/10.1007/BF02635891
  3. Fehr, W. R. and C. E. Caviness. 1997. Stages of soybean development. Iowa State University of Science and Technology Special Report 80.
  4. Fred, S. and C. E Watts. 1993. Dumas method for organic nitrogen. Industrial and Engineering chemistry, Analytical Edition. 11(6) : 333-334. https://doi.org/10.1021/ac50134a013
  5. www.esrl.noaa.gov/gmd/ccgg/trends/global.html/. National Centers for Environmental Information Earth system research laboratory ESR Global monitoring division.
  6. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed composition under high day and night growth temperatures. Journal of the American Oil Chemists' Society 73(6), 733-737. https://doi.org/10.1007/BF02517949
  7. Gibson, L. R. and R. E. Mullen. 2001. Mineral concentrations in soybean seed produced under high day and night temperature. Canadian Journal Plant Science 81(4) : 595-600. https://doi.org/10.4141/P00-177
  8. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H.Y. Kim. 1995. Temperature gradient chambers for research on global environment change III A system designed for rice in Kyoto, Japan. Plant Cell Environment. 18 : 1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  9. Mertz-Henning, L. M., L. C. Ferreira, F. A. Henning, J.M.G. Mandarino, E.D Santos, M.C.N.D. Olivera, A.L Nepomuceno, J.R.B. Faarias, and N. Neumaier. 2018. Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy 8(3) : 1-11.
  10. Piper, E. L. and K. J Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentration. Journal of the American Oil Chemists’ Society 76(10) : 1233-1241. https://doi.org/10.1007/s11746-999-0099-y
  11. Pipolo, A. E., Thomas R. S, and G. M. Camara. 2004. Effects of temperature on oil and protein concentration in soybean seeds cultured in vitro. Annals of Applied Biology 144 : 71-76. https://doi.org/10.1111/j.1744-7348.2004.tb00318.x
  12. Song, W., R. Yang, T. Wu, C. Wu, S. Sun, S. Zhang, B. Jiang, S. Tian, X. Liu, and T. Han. 2016. Analyzing the effects of climate factor on soybean protein oil contents, and composition by extensive and high-density sampling in China. Journal of Agricultural and Food Chemistry 64 : 4121-4130. https://doi.org/10.1021/acs.jafc.6b00008
  13. Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo- Meagher, and J.M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Journal of AgroCrop Sciences 43 : 1548-1577.
  14. Wolf, R. B., J.E. Cavins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. Journal of the American Oil Chemists' Society 59(5) : 230-232. https://doi.org/10.1007/BF02582182
  15. Xu, G., S. Singh, J. Barnaby, J. Buyer, V. Reddy, and R. Sicher. 2016. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stage of development. Plant Physiology and Biochemistry 108 : 313-322. https://doi.org/10.1016/j.plaphy.2016.07.025