DOI QR코드

DOI QR Code

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate

건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성

  • Choi, Hong-Beom (Department of Architectural Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architectural Engineering, Kongju National University)
  • Received : 2018.10.04
  • Accepted : 2018.11.27
  • Published : 2018.12.30

Abstract

Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.

습식바텀애시가 경량골재로서 오랫동안 사용되어 왔지만, 화력발전소에서 배출되는 새로운 타입의 건식 바텀애시에 관해서는 거의 연구되지 않았다. 건식 바텀애시는 건설재료의 관점에서 매우 우수한 경량골재이다. 본 연구는 경량골재 콘크리트의 굳지않은 상태 및 경화상태에서의 다양한 특성을 실험적으로 검토함으로서 바텀애시 경량골재가 경량골재 콘크리트용 잔골재로서의 사용 가능성이 있는지의 여부를 평가한 것이다. 연구결과 건식 바텀애시 대체율 75%까지 슬럼프 저하가 크지 않게 나타났고, 공기량은 건식 바텀애시의 대체율에 영향을 미치지 않는 것으로 나타났다. 콘크리트의 블리딩량은 건식 바텀애시 대체율 75%이하에서는 $0.025cm^3/cm^2$미만으로 나타났으며, 콘크리트 경화 후 압축강도에서는 대체율 75%까지 강도 저하율이 10% 미만으로 나타났다. 잔골재를 건식 바텀애시로 100% 대체시 절건 단위질량은 8.9%의 감소를 보였고, 건식 바텀애시 잔골재 대체율이 증가할수록 건조수축이 감소하는 경향을 보였다. 콘크리트 탄성계수는 건식 바텀애시 잔골재 대체율 50%까지는 저하를 보이지 않았지만, 대체율이 그 이상으로 증가시 탄성계수가 저하하였다. 이상의 결과로부터 건식 바텀애시는 잔골재로 사용 시 다른 잔골재와 혼합 사용할 경우 품질의 저하 없이 사용하는 것이 가능함을 알 수 있었다.

Keywords

GSJHDK_2018_v6n4_267_f0001.png 이미지

Fig. 1. Shape of using lightweight aggregate

GSJHDK_2018_v6n4_267_f0002.png 이미지

Fig. 2. Grading of fine aggregate

GSJHDK_2018_v6n4_267_f0003.png 이미지

Fig. 3. Slump of fresh concrete

GSJHDK_2018_v6n4_267_f0004.png 이미지

Fig. 4. Air content of fresh concrete

GSJHDK_2018_v6n4_267_f0005.png 이미지

Fig. 5. Bleeding of fresh concrete

GSJHDK_2018_v6n4_267_f0006.png 이미지

Fig. 6. Compressive strength of concrete

GSJHDK_2018_v6n4_267_f0007.png 이미지

Fig. 7. Rate of strength development depending on age

GSJHDK_2018_v6n4_267_f0008.png 이미지

Fig. 8. Unit weight of concrete

GSJHDK_2018_v6n4_267_f0009.png 이미지

Fig. 9. Moisture content of concrete

GSJHDK_2018_v6n4_267_f0010.png 이미지

Fig. 10. Dry shrinkage of concrete

GSJHDK_2018_v6n4_267_f0011.png 이미지

Fig. 11. Stress-strain curve of concrete

GSJHDK_2018_v6n4_267_f0012.png 이미지

Fig. 12. Relation on modulus of elasticity and pore of using aggregate in concrete

Table 1. Mixing design

GSJHDK_2018_v6n4_267_t0001.png 이미지

Table 2. Physical properties of using aggregate

GSJHDK_2018_v6n4_267_t0002.png 이미지

References

  1. Han, C.G., Hwang, Y.S. (2003). Influence of mixing and construction factor on the bleeding of concrete, Journal of the Architectural Institute of Korea, 19(2), 107-114 [in Korean].
  2. Han, J.H., Kim, T.S., Kim, H.J., Oh, C.H.(1993). An experimental study on the strength properties of the high-strength lightweight concrete with admixture, Journal of the Architectural Institute of Korea, 9(9), 213-221 [in Korean].
  3. Jeon, H.K., Hong, S.J., Seo, C.H. (2001). A study of the characteristics of the high-flowable lightweight aggregate concrete, Journal of the Architectural Institute of Korea, 17(4), 71-78 [in Korean].
  4. Kim, Y.J., Choi, Y.W. (2010). The quality properties of self consolidating concrete using lightweight aggregate, Journal of the Korean Society of Civil Engineers, 30(6), 573-580 [in Korean].
  5. Kim, H.K. (2015). Properties of normal-strength mortar containing coarsely-crushed bottom ash considering standard particle size distribution of fine aggregate, Journal of the Korea Concrete Institute, 27(5), 531-539 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.5.531
  6. Lee, C.S., Park, J.H., Jung, B.j., Choi Y.J. (2009). Relation between shrinkage and humidity on lightweight concrete and normal concrete by water-cement ratio, Journal of the Korean Society of Civil Engineers, 29(4), 385-393 [in Korean].
  7. Ministry of Trade, Industry and Energy, (2015). Seventh Electricity Supply Plan.
  8. Meng, J.H., Kim, T.Y., Cho, H.N., Kim, E.Y. (2015). Minimizing Environmental Impact of Ash Treatment in Thermal Power Plants (II), Korea Environment Institute.
  9. Park, S.H., Lee, J.B., Kim, S.S. (2016). The durability of the concrete using bottom ash as fine aggregate, Journal of the Korean Recycled Construction Resources Institute, 4(4), 349-355 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.4.349
  10. Pfeifer, D.W., Hanson, J.A. (1967). Sand replacement in structural lightweight concrete sintering grate aggregates, ACI Journal, 121-127.
  11. Rossignolo, J.A., Agnesini, M.V.C., Morais, J.A. (2003). Properties of high-performance LWAC for precast structures with brazilian lightweight aggregate, Cement and Concrete Composites, Elsevier, 25(1), 77-82. https://doi.org/10.1016/S0958-9465(01)00046-4
  12. Ryu, T.D., Lee, S.W., Suh, C.H. (1993). Properties of strength of artificial light weight aggregate concrete with admixture, Journal of the Architectural Institute of Korea, 9(6), 177-185 [in Korean].
  13. Sim, J.I., Yang K. (2010). Air content, workability and bleeding characteristics of fresh lightweight aggregate concrete, Journal of the Korea Concrete Institute, 22(4), 559-566, [in Korean]. https://doi.org/10.4334/JKCI.2010.22.4.559
  14. Slate, F.O., Nilson, A.H., Martinez, S. (1986). Mechanical properties of high-strength lightweight concrete, ACI Journal, 83(4), 606-613.
  15. Sun, J.S., Sung, J.H., Kim, J.M. (2016). Evaluation on the applicability of dry processed bottom ash as lightweight aggregate for construction fields, Journal of Material Cycles and Waste Management, 18(4), 752-762. https://doi.org/10.1007/s10163-015-0367-x
  16. Videla, C., Lopez, M. (1997). Mixture proportioning methodology for structural sand-lightweight concrete, ACI Materials Journal, 83(3), 281-289.
  17. Wang. H.Y., Chen, B.T., Wu, Y.W. (2013). A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC), Construction and Building Materials, 41, 526-531. https://doi.org/10.1016/j.conbuildmat.2012.11.113
  18. Yasar, E., Atis, C.D., Kilic, A., Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly-ash, Materials Letters, Elsevier, 57(15), 2267-2270. https://doi.org/10.1016/S0167-577X(03)00146-0
  19. Zhang, M.H., Gjorv, O.E. (1991). Mechanical properties of high-strength lightweight concrete, ACI Materials Journal, 88(3), 240-247.