DOI QR코드

DOI QR Code

바텀애시를 활용한 인공경량토양의 개발 및 성능 평가

Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash

  • 투고 : 2018.09.28
  • 심사 : 2018.11.26
  • 발행 : 2018.12.30

초록

대규모의 에너지 소비 및 인구의 증가로 온실가스 증가 및 열섬 현상이 빈번한 도시는 녹지공간의 증대가 요구되었고, 한정된 도시 공간에서는 건축물 옥상에 녹지공간을 형성하는 옥상녹화가 증대되었다. 옥상녹화에 사용하는 경량토양은 주로 펄라이트를 사용하나 비산, 분진 등 작업환경의 악화로 다른 경량토양의 요구가 증대되었다. 한편 화력발전소에서 발생하는 바텀애시는 재활용을 위한 다양한 연구가 진행되었는데, 인공경량토양으로의 활용가능성도 확인된 바 있다. 본 연구는 기존의 바텀애시 활용 인공경량토양보다 혼합량이 높은 바텀애시를 사용한 인공경량토양을 개발하고자, 바텀애시의 물리적, 화학적 특성을 분석한 후 유기물의 필요성을 확인하고, 바크, 퇴비, 코코피트 등의 유기재료 배합을 달리하여 최적의 배합을 도출하였고, 이 배합을 조경설계기준에서 제시한 토양성능 항목에 적합여부를 확인한 결과, 중급 정도의 성능을 갖는 인공경량토양임을 확인하였다.

A larger energy consumption and concentration of population induced green house gas glowing and heat island effect in the urban space. Roof green system was a effect method to reduce green house gas and heat concentration in the city. Therefore, construction of this system was increasing. Most of lightweight soil used in roof green system was perlite, but this caused dust and skin disease. So it needed to develop another new lightweight soli for roof green system. Meanwhile, a thermoelectric power plant generated bottom ash as a by-product. According to previous research, bottom ash could be used for artificial lightweight soil with 60 wt% of mixing rate. But this study was proceed to develop a artificial lightweight soil using bottom ash with higher mixing rate by 65 wt% and different organic ingredients. First, physical and chemical properties of bottom ash was investigated. Then test according to landscaping design standard was proceeded for various artificial lightweight soil mix types using bottom ash, bark, compost and coco peat. As a result, the artificial lightweight soil with 65% of bottom ash, 30% of bark and 5% of compost was suitable for low and middle range of soil standard.

키워드

GSJHDK_2018_v6n4_252_f0001.png 이미지

Fig. 1. Classification of bottom ash by size

GSJHDK_2018_v6n4_252_f0002.png 이미지

Fig. 2. Unit weight of bottom ash size classification

GSJHDK_2018_v6n4_252_f0003.png 이미지

Fig. 3. Feature of coco peat

GSJHDK_2018_v6n4_252_f0004.png 이미지

Fig. 4. Feature of bark

GSJHDK_2018_v6n4_252_f0005.png 이미지

Fig. 5. Feature of bark

GSJHDK_2018_v6n4_252_f0006.png 이미지

Fig. 6. Continuous screw mixer for artificial soil

GSJHDK_2018_v6n4_252_f0007.png 이미지

Fig. 7. Manufactured artificial lightweight soil

Table 1. Weight rate & pH as bottom ash size

GSJHDK_2018_v6n4_252_t0001.png 이미지

Table 2. Result of bottom ash as soil chemical property

GSJHDK_2018_v6n4_252_t0002.png 이미지

Table 3. Result of hazardous material in bottom ash eluate

GSJHDK_2018_v6n4_252_t0003.png 이미지

Table 4. Mixing rate of bottom ash artificial soil

GSJHDK_2018_v6n4_252_t0004.png 이미지

Table 5. Test result according to mixing rate

GSJHDK_2018_v6n4_252_t0005.png 이미지

Table 6. Soil property test result of artificial lightweight soil

GSJHDK_2018_v6n4_252_t0006.png 이미지

참고문헌

  1. Baek, S.Y., Kim, H.W., Kim, M.K., Han, M.Y. (2016). Runoff reduction effect of rainwater retentive green roof, KIEAE Journal, 16(1), 67-71 [In Korean]. https://doi.org/10.12813/kieae.2016.16.1.067
  2. Choi, H.B., Kim, J.M., Sun, J.S., Han, D.Y. (2015). Shape improvement and optimum gradation of dry processed bottom ash for lightweight mortar, Journal of Korean recycled construction resource institute, 3(1), 7-14 [In Korean]. https://doi.org/10.14190/JRCR.2015.3.1.007
  3. Hong, S.R., Park, H.I., Sun, J.S., Kim, J.M. (2015). Fundamental study for practical application of artificial soil using coal bottom ash fro, dry process, Journal of korea society of waste management, 32(3), 289-296 [In Korean]. https://doi.org/10.9786/kswm.2015.32.3.289
  4. Kim, J.H., Son, H.M., Kwon, H.S., Kim, J.G., Lee, B.S. (2016). An analysis of energy reduction effects in housing according to green roof, LHI Journal, 7(4), 299-305 [In Korean].
  5. Kim, K.O., Park, S.W. (2013). Shear strength characteristics of artificial soil mixture with pond ash, Journal of the Korean Geo-Environmental Society, 14(10), 39-47 [In Korean].
  6. Kim, S.B. (2012). A research of the residents' availability and health effectiveness based on the types of green roof, Journal of the Korean Institute of Landscape Architecture, 40(3), 60-68 [In Korean]. https://doi.org/10.9715/KILA.2012.40.3.060
  7. Kim, S.H., Lee, J.B., Park, S.H. (2014a). Bottom ash on the application for use as fine aggregate of concrete, Journal of the Korean Recycled Construction Resources Institute, 2(3), 173-179 [In Korean]. https://doi.org/10.14190/JRCR.2014.2.3.173
  8. Kim, Y.H., Park, S.J. (2014b). Low-carbon green planning elements and carbon reduction effect in urban regeneration project-with case study on the CBD of cheongju city, Journal of the Urban Design Institute of Korea, 15(1), 167-182 [In Korean].
  9. Koh, Y.I. (2013). The consideration work method of mixed coal ash in ash pond to recycle as a horizontal drain material, Journal of the Korean Geo-Environmental Society, 14(4), 53-58 [In Korean]. https://doi.org/10.14481/jkges.2013.14.12.053
  10. Lee, C.W., Kim S.B., Moon, H.S. (2011). A study of temperature reduction effect by the types of the green roof, Journal of the Korean Housing Association, 22(3), 25-33 [In Korean]. https://doi.org/10.6107/JKHA.2011.22.3.025
  11. Lee, M.J., Kim, J.M., Han, D.Y., Choi, D.J., Lee, K.W. (2015). Engineering performance of extruded fly ash cement panel with bottom ash, Journal of the Korean Recycled Construction Resources Institute, 3(3), 252-260 [In Korean]. https://doi.org/10.14190/JRCR.2015.3.3.252
  12. Oh, C.W., Hong, J.C., Park, K.B. (2016). Performance evaluation for the application of roof green box unit system combined with engineering P.E. water proof and root penetration sheet, Journal of Korea Institute of Building Construction, 16(2), 125-131 [In Korean]. https://doi.org/10.5345/JKIBC.2016.16.2.125