DOI QR코드

DOI QR Code

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum

  • Park, Yong Soo (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Jeon, Ji Hyun (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Lee, Seung Hee (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Paik, Sun Sook (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Kim, In-Beom (Department of Anatomy, College of Medicine, The Catholic University of Korea)
  • Received : 2018.12.03
  • Accepted : 2018.12.19
  • Published : 2018.12.30

Abstract

Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.

Keywords

References

  1. Apps R and Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297-311. https://doi.org/10.1038/nrn1646
  2. Barmack N H and Yakhnitsa V (2011) Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 17, 221-236. https://doi.org/10.1177/1073858410380251
  3. Billig G M, Pal B, Fidzinski P, and Jentsch T J (2011) $Ca^{2+}$-activated $Ca^{-}$ currents are dispensable for olfaction. Nat. Neurosci. 14, 763-769. https://doi.org/10.1038/nn.2821
  4. Bloedel J R and Bracha V (2009) Cerebellar functions. In: Encyclopedic Reference of Neuroscience, eds. Binder M D, Hirokawa N, Windhorst U, pp. 667-671, (Springer-Verlag, Heidelberg).
  5. Borst J G and Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. 489, 825-840. https://doi.org/10.1113/jphysiol.1995.sp021095
  6. Buchholz B, Faria D, Schley G, Schreiber R, Eckardt K U, and Kunzelmann K (2014) Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058-1067. https://doi.org/10.1038/ki.2013.418
  7. Bulley S, Neeb Z P, Burris S K, Bannister J P, Thomas-Gatewood C M, Jangsangthong W, and Jaggar J H (2012) TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 111, 1027-1036. https://doi.org/10.1161/CIRCRESAHA.112.277145
  8. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, and Galietta L J (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590-594. https://doi.org/10.1126/science.1163518
  9. Catalan M A, Kondo Y, Pena-Munzenmayer G, Jaramillo Y, Liu F, Choi S, Crandall E, Borok Z, Flodby P, Shull G E, and Melvin J E (2015) A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl. Acad. Sci. U. S. A. 112, 2263-2268. https://doi.org/10.1073/pnas.1415739112
  10. Cherkashin A P, Kolesnikova A S, Tarasov M V, Romanov R A, Rogachevskaja O A, Bystrova M F, and Kolesnikov S S (2016) Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Arch. 468, 305-319. https://doi.org/10.1007/s00424-015-1751-z
  11. Cho H and Oh U (2013) Anoctamin 1 mediates thermal pain as a heat sensor. Curr. Neuropharmacol. 11, 641-651. https://doi.org/10.2174/1570159X113119990038
  12. Cho H, Yang Y D, Lee J, Lee B, Kim T, Jang Y, Back S K, Na H S, Harfe B D, Wang F, Raouf R, Wood J N, and Oh U (2012) The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015-1021. https://doi.org/10.1038/nn.3111
  13. Cho S J, Jeon J H, Chun D I, Yeo S W, and Kim I B (2014) Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 357, 563-569. https://doi.org/10.1007/s00441-014-1897-6
  14. Dauner K, Mobus C, Frings S, and Mohrlen F (2013) Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest. Ophthalmol. Vis. Sci. 54, 3126-3136. https://doi.org/10.1167/iovs.13-11711
  15. Davis A J, Shi J, Pritchard H A, Chadha P S, Leblanc N, Vasilikostas G, Yao Z, Verkman A S, Albert A P, and Greenwood I A (2012) Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br. J. Pharmacol. 168, 773-784.
  16. Delvendahl I and Hallermann S (2016) The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39, 722-737. https://doi.org/10.1016/j.tins.2016.09.006
  17. Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un) loved? Proc. Am. Thorac. Soc. 1, 22-27. https://doi.org/10.1513/pats.2306010
  18. Faria D, Rock J R, Romao A M, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstadt H, Herrmann E, Kunzelmann K, and Schreiber R (2014) The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381. https://doi.org/10.1038/ki.2013.535
  19. Frings S, Reuter D, and Kleene S J (2000) Neuronal $Ca^{2+}$-activated $Ca^{-}$channels: homing in on an elusive channel species. Prog. Neurobiol. 60, 247-289. https://doi.org/10.1016/S0301-0082(99)00027-1
  20. Forsythe I D and Barnes-Davies M (1993) The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc. Biol. Sci. 251, 143-150. https://doi.org/10.1098/rspb.1993.0021
  21. Ha G E, Lee J, Kwak H, Song K, Kwon J, Jung S Y, Hong J, Chang G E, Hwang E M, Shin H S, Lee C J, and Cheong E (2016) The $Ca^{2+}$-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat. Commun. 7, 13791. https://doi.org/10.1038/ncomms13791
  22. Hartzell C, Putzier I, and Arreola J (2005) Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719-758. https://doi.org/10.1146/annurev.physiol.67.032003.154341
  23. Huang F, Rock J R, Harfe B D, Cheng T, Huang X, Jan Y N, and Jan L Y (2009) Studies on expression and function of the TMEM16A calciumactivated chloride channel. Proc. Natl. Acad. Sci. U. S. A. 106, 21413-21418. https://doi.org/10.1073/pnas.0911935106
  24. Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff P G, Solberg O D, Donne M L, Huang X, Sheppard D, Fahy J V, Wolters P J, Hogan BL, Finkbeiner W E, Li M, Jan Y N, Jan L Y, and Rock J R (2012) Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. U. S. A. 109, 16354-16359. https://doi.org/10.1073/pnas.1214596109
  25. Huang W C, Xiao S, Huang F, Harfe B D, Jan Y N, Jan L Y (2012) Calciumactivated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74, 179-192. https://doi.org/10.1016/j.neuron.2012.01.033
  26. Jeon J H, Paik S S, Chun M H, Oh U, and Kim I B (2013) Presynaptic localization and possible function of calcium-activated chloride channel anoctamin 1 in the mammalian retina. PLoS One 8, e67989. https://doi.org/10.1371/journal.pone.0067989
  27. Jeon J H, Park J W, Lee J W, Jeong S W, Yeo S W, and Kim I B (2011) Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res. 345, 223-230. https://doi.org/10.1007/s00441-011-1206-6
  28. Leclerc N, Beesley P W, Brown I, Colonnier M, Gurd J W, Paladino T, and Hawkes R (1989) Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197-212. https://doi.org/10.1002/cne.902800204
  29. Lee B, Cho H, Jung J, Yang Y D, Yang D J, and Oh U (2014) Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5.
  30. Liu B, Linley J E, Du X, Zhang X, Ooi L, Zhang H, and Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. J. Clin. Invest. 120, 1240-1252. https://doi.org/10.1172/JCI41084
  31. Llinas R R and Walton K D (1998) Cerebellum. In: The Synaptic Organization of the Brain, ed. Shepherd G M, pp. 255-288, (Oxford University Press, Oxford).
  32. Namkung W, Phuan P W, and Verkman A S (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 2365-2374. https://doi.org/10.1074/jbc.M110.175109
  33. Neureither F, Ziegler K, Pitzer C, Frings S, and Mohrlen F (2017) Impaired motor coordination and learning in mice lacking anoctamin 2 calcium-gated chloride channels. Cerebellum 16, 929-937. https://doi.org/10.1007/s12311-017-0867-4
  34. Ousingsawat J, Martins J R, Schreiber R, Rock J R, Harfe B D, and Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284, 28698-28703. https://doi.org/10.1074/jbc.M109.012120
  35. Romanenko V G, Catalan M A, Brown D A, Putzier I, Hartzell H C, Marmorstein A D, Gonzalez-Begne M, Rock J R, Harfe B D, and Melvin J E (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J. Biol. Chem. 285, 12990-13001. https://doi.org/10.1074/jbc.M109.068544
  36. Schreiber R, Faria D, Skryabin B V, Wanitchakool P, Rock J R, and Kunzelmann K (2015) Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 467, 1203-1213. https://doi.org/10.1007/s00424-014-1559-2
  37. Schroeder B C, Cheng Y, Jan Y N, and Jan L Y (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019-1029. https://doi.org/10.1016/j.cell.2008.09.003
  38. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, Tomati V, Gianotti A, Zegarra-Moran O, Pedemonte N, Rea F, Ravazzolo R, and Galietta L J (2012) Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J. Physiol. 590, 6141-6155. https://doi.org/10.1113/jphysiol.2012.240838
  39. Stephan A B, Shum E Y, Hirsh S, Cygnar K D, Reisert J, and Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. U. S. A. 106, 11776-11781. https://doi.org/10.1073/pnas.0903304106
  40. Stohr H, Heisig J B, Benz P M, Schoberl S, Milenkovic V M, Strauss O, Aartsen W M, Wijnholds J, Weber B H, and Schulz H L (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J. Neurosci. 29, 6809-6818. https://doi.org/10.1523/JNEUROSCI.5546-08.2009
  41. Sun H, Xia Y, Paudel O, Yang X R, and Sham J S (2012) Chronic hypoxiainduced upregulation of Ca2+-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J. Physiol. 590, 3507-3521. https://doi.org/10.1113/jphysiol.2012.232520
  42. Takayama Y, Uta D, Furue H, and Tominaga M (2015) Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 112, 5213-5218. https://doi.org/10.1073/pnas.1421507112
  43. Wolf H K, Buslei R, Schmidt-Kastner R, Schmidt-Kastner P K, Pietsch T, Wiestler O D, and Blumcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 44, 1167-1171. https://doi.org/10.1177/44.10.8813082
  44. Yang Y D, Cho H, Koo J Y, Tak M H, Cho Y, Shim W S, Park S P, Lee J, Lee B, Kim B M, Raouf R, Shin Y K, and Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210-1215. https://doi.org/10.1038/nature07313
  45. Zhang W, Schmelzeisen S, Parthier D, Frings S, and Mohrlen F (2015a) Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One 10, e0142160. https://doi.org/10.1371/journal.pone.0142160
  46. Zhang X D, Lee J H, Lv P, Chen W C, Kim H J, Wei D, Wang W, Sihn CR, Doyle K J, Rock J R, Chiamvimonvat N, and Yamoah E N (2015b) Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc. Natl. Acad. Sci. U. S. A. 112, 2575-2580. https://doi.org/10.1073/pnas.1414741112
  47. Zhang Y, Zhang Z, Xiao S, Tien J, Le S, Le T, Jan L Y, and Yang H (2017) Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron 95, 1103-1111. https://doi.org/10.1016/j.neuron.2017.08.010