References
- Apps R and Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297-311. https://doi.org/10.1038/nrn1646
- Barmack N H and Yakhnitsa V (2011) Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 17, 221-236. https://doi.org/10.1177/1073858410380251
-
Billig G M, Pal B, Fidzinski P, and Jentsch T J (2011)
$Ca^{2+}$ -activated$Ca^{-}$ currents are dispensable for olfaction. Nat. Neurosci. 14, 763-769. https://doi.org/10.1038/nn.2821 - Bloedel J R and Bracha V (2009) Cerebellar functions. In: Encyclopedic Reference of Neuroscience, eds. Binder M D, Hirokawa N, Windhorst U, pp. 667-671, (Springer-Verlag, Heidelberg).
- Borst J G and Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. 489, 825-840. https://doi.org/10.1113/jphysiol.1995.sp021095
- Buchholz B, Faria D, Schley G, Schreiber R, Eckardt K U, and Kunzelmann K (2014) Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058-1067. https://doi.org/10.1038/ki.2013.418
- Bulley S, Neeb Z P, Burris S K, Bannister J P, Thomas-Gatewood C M, Jangsangthong W, and Jaggar J H (2012) TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 111, 1027-1036. https://doi.org/10.1161/CIRCRESAHA.112.277145
- Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, and Galietta L J (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590-594. https://doi.org/10.1126/science.1163518
- Catalan M A, Kondo Y, Pena-Munzenmayer G, Jaramillo Y, Liu F, Choi S, Crandall E, Borok Z, Flodby P, Shull G E, and Melvin J E (2015) A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl. Acad. Sci. U. S. A. 112, 2263-2268. https://doi.org/10.1073/pnas.1415739112
- Cherkashin A P, Kolesnikova A S, Tarasov M V, Romanov R A, Rogachevskaja O A, Bystrova M F, and Kolesnikov S S (2016) Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Arch. 468, 305-319. https://doi.org/10.1007/s00424-015-1751-z
- Cho H and Oh U (2013) Anoctamin 1 mediates thermal pain as a heat sensor. Curr. Neuropharmacol. 11, 641-651. https://doi.org/10.2174/1570159X113119990038
- Cho H, Yang Y D, Lee J, Lee B, Kim T, Jang Y, Back S K, Na H S, Harfe B D, Wang F, Raouf R, Wood J N, and Oh U (2012) The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015-1021. https://doi.org/10.1038/nn.3111
- Cho S J, Jeon J H, Chun D I, Yeo S W, and Kim I B (2014) Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 357, 563-569. https://doi.org/10.1007/s00441-014-1897-6
- Dauner K, Mobus C, Frings S, and Mohrlen F (2013) Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest. Ophthalmol. Vis. Sci. 54, 3126-3136. https://doi.org/10.1167/iovs.13-11711
- Davis A J, Shi J, Pritchard H A, Chadha P S, Leblanc N, Vasilikostas G, Yao Z, Verkman A S, Albert A P, and Greenwood I A (2012) Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br. J. Pharmacol. 168, 773-784.
- Delvendahl I and Hallermann S (2016) The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39, 722-737. https://doi.org/10.1016/j.tins.2016.09.006
- Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un) loved? Proc. Am. Thorac. Soc. 1, 22-27. https://doi.org/10.1513/pats.2306010
- Faria D, Rock J R, Romao A M, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstadt H, Herrmann E, Kunzelmann K, and Schreiber R (2014) The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381. https://doi.org/10.1038/ki.2013.535
-
Frings S, Reuter D, and Kleene S J (2000) Neuronal
$Ca^{2+}$ -activated$Ca^{-}$ channels: homing in on an elusive channel species. Prog. Neurobiol. 60, 247-289. https://doi.org/10.1016/S0301-0082(99)00027-1 - Forsythe I D and Barnes-Davies M (1993) The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc. Biol. Sci. 251, 143-150. https://doi.org/10.1098/rspb.1993.0021
-
Ha G E, Lee J, Kwak H, Song K, Kwon J, Jung S Y, Hong J, Chang G E, Hwang E M, Shin H S, Lee C J, and Cheong E (2016) The
$Ca^{2+}$ -activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat. Commun. 7, 13791. https://doi.org/10.1038/ncomms13791 - Hartzell C, Putzier I, and Arreola J (2005) Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719-758. https://doi.org/10.1146/annurev.physiol.67.032003.154341
- Huang F, Rock J R, Harfe B D, Cheng T, Huang X, Jan Y N, and Jan L Y (2009) Studies on expression and function of the TMEM16A calciumactivated chloride channel. Proc. Natl. Acad. Sci. U. S. A. 106, 21413-21418. https://doi.org/10.1073/pnas.0911935106
- Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff P G, Solberg O D, Donne M L, Huang X, Sheppard D, Fahy J V, Wolters P J, Hogan BL, Finkbeiner W E, Li M, Jan Y N, Jan L Y, and Rock J R (2012) Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. U. S. A. 109, 16354-16359. https://doi.org/10.1073/pnas.1214596109
- Huang W C, Xiao S, Huang F, Harfe B D, Jan Y N, Jan L Y (2012) Calciumactivated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74, 179-192. https://doi.org/10.1016/j.neuron.2012.01.033
- Jeon J H, Paik S S, Chun M H, Oh U, and Kim I B (2013) Presynaptic localization and possible function of calcium-activated chloride channel anoctamin 1 in the mammalian retina. PLoS One 8, e67989. https://doi.org/10.1371/journal.pone.0067989
- Jeon J H, Park J W, Lee J W, Jeong S W, Yeo S W, and Kim I B (2011) Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res. 345, 223-230. https://doi.org/10.1007/s00441-011-1206-6
- Leclerc N, Beesley P W, Brown I, Colonnier M, Gurd J W, Paladino T, and Hawkes R (1989) Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197-212. https://doi.org/10.1002/cne.902800204
- Lee B, Cho H, Jung J, Yang Y D, Yang D J, and Oh U (2014) Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5.
- Liu B, Linley J E, Du X, Zhang X, Ooi L, Zhang H, and Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. J. Clin. Invest. 120, 1240-1252. https://doi.org/10.1172/JCI41084
- Llinas R R and Walton K D (1998) Cerebellum. In: The Synaptic Organization of the Brain, ed. Shepherd G M, pp. 255-288, (Oxford University Press, Oxford).
- Namkung W, Phuan P W, and Verkman A S (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 2365-2374. https://doi.org/10.1074/jbc.M110.175109
- Neureither F, Ziegler K, Pitzer C, Frings S, and Mohrlen F (2017) Impaired motor coordination and learning in mice lacking anoctamin 2 calcium-gated chloride channels. Cerebellum 16, 929-937. https://doi.org/10.1007/s12311-017-0867-4
- Ousingsawat J, Martins J R, Schreiber R, Rock J R, Harfe B D, and Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284, 28698-28703. https://doi.org/10.1074/jbc.M109.012120
- Romanenko V G, Catalan M A, Brown D A, Putzier I, Hartzell H C, Marmorstein A D, Gonzalez-Begne M, Rock J R, Harfe B D, and Melvin J E (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J. Biol. Chem. 285, 12990-13001. https://doi.org/10.1074/jbc.M109.068544
- Schreiber R, Faria D, Skryabin B V, Wanitchakool P, Rock J R, and Kunzelmann K (2015) Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 467, 1203-1213. https://doi.org/10.1007/s00424-014-1559-2
- Schroeder B C, Cheng Y, Jan Y N, and Jan L Y (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019-1029. https://doi.org/10.1016/j.cell.2008.09.003
- Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, Tomati V, Gianotti A, Zegarra-Moran O, Pedemonte N, Rea F, Ravazzolo R, and Galietta L J (2012) Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J. Physiol. 590, 6141-6155. https://doi.org/10.1113/jphysiol.2012.240838
- Stephan A B, Shum E Y, Hirsh S, Cygnar K D, Reisert J, and Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. U. S. A. 106, 11776-11781. https://doi.org/10.1073/pnas.0903304106
- Stohr H, Heisig J B, Benz P M, Schoberl S, Milenkovic V M, Strauss O, Aartsen W M, Wijnholds J, Weber B H, and Schulz H L (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J. Neurosci. 29, 6809-6818. https://doi.org/10.1523/JNEUROSCI.5546-08.2009
- Sun H, Xia Y, Paudel O, Yang X R, and Sham J S (2012) Chronic hypoxiainduced upregulation of Ca2+-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J. Physiol. 590, 3507-3521. https://doi.org/10.1113/jphysiol.2012.232520
- Takayama Y, Uta D, Furue H, and Tominaga M (2015) Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 112, 5213-5218. https://doi.org/10.1073/pnas.1421507112
- Wolf H K, Buslei R, Schmidt-Kastner R, Schmidt-Kastner P K, Pietsch T, Wiestler O D, and Blumcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 44, 1167-1171. https://doi.org/10.1177/44.10.8813082
- Yang Y D, Cho H, Koo J Y, Tak M H, Cho Y, Shim W S, Park S P, Lee J, Lee B, Kim B M, Raouf R, Shin Y K, and Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210-1215. https://doi.org/10.1038/nature07313
- Zhang W, Schmelzeisen S, Parthier D, Frings S, and Mohrlen F (2015a) Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One 10, e0142160. https://doi.org/10.1371/journal.pone.0142160
- Zhang X D, Lee J H, Lv P, Chen W C, Kim H J, Wei D, Wang W, Sihn CR, Doyle K J, Rock J R, Chiamvimonvat N, and Yamoah E N (2015b) Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc. Natl. Acad. Sci. U. S. A. 112, 2575-2580. https://doi.org/10.1073/pnas.1414741112
- Zhang Y, Zhang Z, Xiao S, Tien J, Le S, Le T, Jan L Y, and Yang H (2017) Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron 95, 1103-1111. https://doi.org/10.1016/j.neuron.2017.08.010