DOI QR코드

DOI QR Code

Current overshoot operation of a REBCO magnet to mitigate SCF

  • Lee, Changhyung (School of Mechanical Engineering, Changwon National University) ;
  • Hahn, Seungyong (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Bang, Jeseok (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Cho, Jeonwook (Korea Electrotechnology Research Institute (KERI)) ;
  • Kim, Seokho (School of Mechanical Engineering, Changwon National University)
  • Received : 2018.12.11
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

Due to large in-field current carrying capacity and strong mechanical strength, a REBCO wire has been regarded as a viable high temperature superconductor (HTS) option for high field MRI and > 1 GHz (>23.5 T) NMR magnets. However, a REBCO magnet is well known to have an inherent problem of field inhomogeneity, so-called 'Screening Current induced magnetic Field (SCF)'. Recently, 'field shaking' and 'current overshoot operation' techniques have been successfully demonstrated to mitigate the SCF and enhance the field homogeneity by experiments. To investigate the effectiveness of current overshooting operation technique, a numerical simulation is conducted for a test REBCO magnet composed of a stack of double pancake coils using '2D edge-element magnetic field formulation' combined with 'domain homogenization' scheme. The simulation result demonstrates that an appropriate amount of current overshoot can negate the SCF. To verify the simulation results, current overshoot experiments are conducted for the REBCO magnet in liquid nitrogen. Experimental results also demonstrate the possible application of current overshoot technique to mitigate the SCF and enhance the field homogeneity.

Keywords

CJJOCB_2018_v20n4_65_f0001.png 이미지

Fig. 1. Generation of non-uniform current distribution by induced screening current in a REBCO tape.

CJJOCB_2018_v20n4_65_f0002.png 이미지

Fig. 2. Example of current overshoot operation.

CJJOCB_2018_v20n4_65_f0003.png 이미지

Fig. 3. Double pancake REBCO coils by co-winding of polyimide film.

CJJOCB_2018_v20n4_65_f0004.png 이미지

Fig. 4. Fabricated REBCO magnet by stacking 3 DPCs and external joints.

CJJOCB_2018_v20n4_65_f0005.png 이미지

Fig. 5. Critical current measurement of the REBCO magnet.

CJJOCB_2018_v20n4_65_f0006.png 이미지

Fig. 6. Equivalent current distributions at transport current of 40 A: (a) uniform current distribution; (b) after simple ramp up; (c) after 10 % current overshoot; (d) after 20 % current overshoot.

CJJOCB_2018_v20n4_65_f0007.png 이미지

Fig. 7. Calculated SCF at the magnet center for different current overshoots and target currents.

CJJOCB_2018_v20n4_65_f0008.png 이미지

Fig. 8. Experimental results of simple linear ramp up and down.

CJJOCB_2018_v20n4_65_f0009.png 이미지

Fig. 9. Measured SCF at the magnet center for different current overshoots and target currents.

TABLE I SPECIFICATIONS OF REBCO WIRE AND KEY PARAMETERS OF REBCO MAGNET.

CJJOCB_2018_v20n4_65_t0001.png 이미지

TABLE II COMPARISON OF ANALYSIS AND EXPERIMENTAL RESULTS.

CJJOCB_2018_v20n4_65_t0002.png 이미지

References

  1. K. Osamura, S. Machiya and D. Hamsphire, "Mechanism for the uniaxial strain dependence of the critical current in practical REBCO tapes," Supercond. Sci. Technol. vol. 29, no. 6, pp. 065019, 2016. https://doi.org/10.1088/0953-2048/29/6/065019
  2. S. Hahn, D. K. Park, J. Bascunan and Y. Iwasa, "HTS Pancake Coils without turn-to-turn insulation," IEEE Trans. Appl. Supercond., vol.21, no. 3, pp. 1592-1595, 2011. https://doi.org/10.1109/TASC.2010.2093492
  3. S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn and S. Moon, "26 T 35 mm all-$GdBa_2Cu_3O_{7-x}$ multi-width no-insulation superconducting magnet," Supercond. Sci. Technol., vol. 29, no. 4, pp. 04LT04, 2016. https://doi.org/10.1088/0953-2048/29/4/04LT04
  4. J. Bascunan, S. Hahn, T. Lecrevisse, J. Song, D. Miyagi and Y. Iwasa, "An 800-MHz all-REBCO Insert for the 1.3-GHz LTS/HTS NMR Magnet Program-A Progress Report," IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1-5, 2016.
  5. S. Hahn, D. K. Park, J. Voccio, J. Bascunan and Y. Iwasa, "No-Insulation (NI) HTS Inserts for 1 GHz LTS/HTS NMR Magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, pp. 4302405, 2012. https://doi.org/10.1109/TASC.2011.2178976
  6. J. Bascunan, S. Hahn, Y. Kim and Y. Iwasa, "A new high-temperature superconducting (HTS) 700-MHz insert magnet for a 1.3-GHz LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 4400304, 2013. https://doi.org/10.1109/TASC.2012.2234812
  7. J. Bascunan, S. Hahn, Y. Kim, J. Song and Y. Iwasa, "90-mm/18.8-T all-HTS insert magnet for 1.3 GHz LTS/HTS NMR application: Magnet design and double-pancake coil fabrication," IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 4300904, 2014.
  8. Y. Iwasa, J. Bascunan, S. Hahn, J. Voccio, Y. Kim, T. Lecrevisse, J. Song and K. Kajikawa, "A high-resolution 1.3-GHz/54-mm LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 4301205, 2015.
  9. S. Hahn, J. Bascunan, W. Kim, E. S. Bobrov, H. Lee and Y. Iwasa, "Field Mapping, NMR Lineshape, and Screening Currents Induced Field Analyses for Homogeneity Improvement in LTS/HTS NMR Magnets," IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 856-859, 2008. https://doi.org/10.1109/TASC.2008.921225
  10. M. C. Ahn, T. Yagai, S. Hahn, R. Ando, J. Bascunan and Y. Iwasa, "Spatial and temporal variations of a screening current induced magnetic field in a double-pancake HTS insert of an LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 2269-2272. 2009. https://doi.org/10.1109/TASC.2009.2018102
  11. Y. Yanagisawa, Y. Kominato, H. Nakagome, R. Hu, T. Takematsu, T. Takao, D. Uglietti, T. Kiyoshi, M. Takahashi and H. Maeda, "Magnitude of the Screening Field for YBCO Coils," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1640-1643, 2011. https://doi.org/10.1109/TASC.2010.2087311
  12. K. L. Kim, S. Hahn, Y. H. Choi, Y. G. Kim, D. H. Kang, K. Kazikawa and H. G. Lee, "Feasibility study for elimination of the screening currents-induced fields in HTS coils", J. Supercond. Nov. Magn., vol. 28, pp. 83-88, 2015. https://doi.org/10.1007/s10948-014-2790-y
  13. E. H. Brandt and G. P. Mikitik, "Shaking of the critical state by a small transverse ac field can cause rapid relaxation in superconductors," Supercond. Sci. Technol., vol 17, no.2, pp. s1-s5, 2003.
  14. K. Kajikawa, G. Gettliffe, Y. Chu, D. Miyagi, T. Lecrevisse, S. Hahn, J. Bascunan, and Y. Iwasa, "Designs and tests of shaking coils to reduce screening currents induced in HTS insert coils for NMR magnet," IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 4300305, 2015.
  15. A. Matsumi, H. Ueda, S. Noguchi, T. Wang, A. Ishiyama, H. Miyazaki, T. Tosaka et al, "Evaluation of irregular magnetic field generated by screening current in rebco coils for high accuracy field," IEEE Trans. Appl. Supercond., vol 26, no. 4, pp 4702305, 2016.
  16. S. Kim, C. Lee, J. Bang and S. Hahn, "Manipulation of screening currents in an $(RE)Ba_2Cu_3O_{7-x}$ superconducting magnet," Materials Research Express, vol. 6, no. 2, pp. 026004, 2019.
  17. R. Brambilla, F. Grilli and L. Martini, "Development of an edge-element model for AC loss computation of high-temperature superconductors," Supercond. Sci. Technol, vol. 20, no. 1, pp. 16-24, 2006. https://doi.org/10.1088/0953-2048/20/1/004
  18. V. Zermeno, N. Pedersen, M. Sorensen, P. Kjaer and R. Anbarasu, "Computation of Superconducting Generators for Wind Turbine Applications," Ph. D. thesis, Technical University of Denmark, 2012.