DOI QR코드

DOI QR Code

CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis

  • 김성민 (경희대학교 사회기반시스템공학과) ;
  • 이주형 (한국건설기술연구원 지반연구소) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • Kim, Seongmin (Dept. of Civil Engrg., Kyung Hee Univ.) ;
  • Lee, Ju-Hyung (Geotechnical Engrg. Research Institute, Korea Institute of Civil Engrg. and Building Technology) ;
  • Jung, Young-Hoon (Dept. of Civil Engrg., Kyung Hee Univ.)
  • 투고 : 2018.10.08
  • 심사 : 2018.11.15
  • 발행 : 2018.12.31

초록

한계평형법 이론들을 사용하기 위해서는 극한 파괴 상태에서 나타나는 파괴 전단면을 찾아야 한다. 강도 감소법에서는 유한요소해석의 수치해가 일정 반복 횟수 이내에 수렴하지 못하는 시점을 극한 파괴 상태로 정의한다. 하지만 Coupled Eulerian-Lagrangian (CEL)기법을 유한요소해석에서 사용하면 극한 파괴 상태에 도달하여도 수치해의 비수렴 상황이 발생하지 않으므로 이러한 정의는 사용하기 어렵다. 본 연구에서는 CEL 기법을 이용한 유한요소해석에서 지반의 극한 파괴 상태를 감지할 수 있는 객관적인 물리량 기준을 제시하였다. 비배수 조건의 연약지반이 연속기초 하중을 받는 경우 극한 파괴 상태에 해당하는 이론적 하중에서 소성 소산 에너지의 변화속도가 민감하게 변화함을 찾을 수 있었다.

In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

키워드

GJBGC4_2018_v34n12_59_f0001.png 이미지

Fig. 1. Geometry and boundary conditions of strip footing model

GJBGC4_2018_v34n12_59_f0002.png 이미지

Fig. 2. Geometry and boundary conditions of CEL model

GJBGC4_2018_v34n12_59_f0003.png 이미지

Fig. 3. Reaction force-time curve of the strip footing

GJBGC4_2018_v34n12_59_f0004.png 이미지

Fig. 4. Variations of observed parameters during loading

GJBGC4_2018_v34n12_59_f0005.png 이미지

Fig. 4. Variations of observed parameters during loading (Continued)

GJBGC4_2018_v34n12_59_f0006.png 이미지

Fig. 5. Rate variations of observed parameters during loading

GJBGC4_2018_v34n12_59_f0007.png 이미지

Fig. 5. Rate variations of observed parameters during loading (Continued)

GJBGC4_2018_v34n12_59_f0008.png 이미지

Fig. 6. Finite element models along the analysis conditions

GJBGC4_2018_v34n12_59_f0009.png 이미지

Fig. 7. Reaction force-time curves and plastic dissipated energy rates along the analysis conditions

GJBGC4_2018_v34n12_59_f0010.png 이미지

Fig. 8. Failure slip lines along the analysis conditions

Table 1. Material properties of strip footing model

GJBGC4_2018_v34n12_59_t0001.png 이미지

Table 2. Analysis conditions of the strip footing model

GJBGC4_2018_v34n12_59_t0002.png 이미지

참고문헌

  1. ABAQUS. (2017), ABAQUS user's and theory manuals, Version 2017. Pawtucket, R.I., Hibbitt, Karlsson & Sorensen, Inc.
  2. Bui, H.H., Fukagawa, R., Sako, K., and Wells J.C. (2011), "Slope Stability Analysis and Discontinuous Slope Failure Simulation by Elasto-plastic Smoothed Particle Hydrodynamics (SPH)", Geotechnique, Vol.61, No.7, pp.565-574. https://doi.org/10.1680/geot.9.P.046
  3. Chen, X.Y. and Zhang, L.L. (2018), "Slope Stability Analysis Based on the Coupled Eulerian-Lagrangian Method", GeoShanghai International Conference, pp.152-159.
  4. Chok, Y. H., Jaksa, M. B., Kaggwa, W. S., and Griffiths, D. V. (2015), "Assessing the influence of root reinforcement on slope stability by finite elements", International Journal of Geo-Engineering, Volume 6, Paper no. 12, DOI 10.1186/s40703-015-0012-5
  5. Dai, W., Jiang, P., Ding, J., and Fu, B. (2017), "The Influence of Strength Reduction Method on Slope Stability Under Different Instability Criteria", International Conference on Architectural Engineering and New Materials, pp.539-546.
  6. El-Garhy, B. and Elsawy, M. (2017), "Effect of different parameters on the behavior of strip footing resting on weak soil improved by granular piles", International Journal of Geo-Engineering, Volume 8, Paper no.4, DOI 10.1186/s40703-017-0042-2
  7. Griffiths, D.V. and Lane, P.A. (1999), "Slope Stability Analysis by Finite Elements", Geotechnique, Vol.49, No.3, pp.387-403. https://doi.org/10.1680/geot.1999.49.3.387
  8. Gu, X.J., Zhou, T.Q., and Lu, S.L. (2014), "Stability Analysis on Anti-slide Pile to Reinforce Slope Based on ABAQUS", Applied Mechanics and Materials, Vols.580-583, pp.711-714. https://doi.org/10.4028/www.scientific.net/AMM.580-583.711
  9. Luan, M., Wu, Y., and Nian, T. (2003), "A Criterion For Evaluating Slope Stability Based on Development of Plastic Zone by Shear Strength Reduction FEM", Journal of Disaster Prevention and Mitigation Engineering, Vol.23, No.3, pp.1-8. https://doi.org/10.3969/j.issn.1672-2132.2003.03.001
  10. Qiu, G., Henke, S., and Grabe, J. (2009), "Applications of Coupled Eulerian-Lagrangian Method to Geotechnical Problems with Large Deformations", SIMULIA Customer Conference.
  11. Terzaghi, K. (1943), "Theoretical Soil Mechanics", New York, John Wiley and Sons.
  12. Zienkiewicz, O.C., Humpheson, C., and Lewis, R. W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, Vol.25, No.4, pp.671-689. https://doi.org/10.1680/geot.1975.25.4.671
  13. Zienkiewicz, O.C. and Taylor, R.L. (1989), "The Finite Element Method", Vol.1, 4th edn, London, New York, McGraw-Hill.