DOI QR코드

DOI QR Code

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation

대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성

  • Park, Sung-Sik (Dept. of Civil Eng., Kyungpook National Univ.,) ;
  • Kim, Seong-Heon (Dept. of Civil Eng., Kyungpook National Univ.,) ;
  • Bae, Do-Han (Youth Housing Planning Dept., Korea Land & Housing Corporation)
  • 박성식 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 김성헌 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 배도한 (한국토지주택공사 청년주택계획처)
  • Received : 2018.09.06
  • Accepted : 2018.12.13
  • Published : 2018.12.31

Abstract

Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

대구경북지역 셰일 및 이암은 다른 암석에 비해 강도가 낮고 풍화에 약하므로 이러한 암석의 포화상태나 균열 발달 정도가 강도에 미치는 영향에 대해 분석할 필요가 있다. 이에 본 연구에서는 대구경북지역 토목공사 현장에서 셰일 및 이암을 채취한 다음 흡수율, SEM, 화학성분, 내구성시험과 같은 기본 물성시험을 실시하였으며, 셰일에 비해 이암의 공극률(흡수율)은 31%(25%) 정도로 6(8)배 정도 높은 값을 보였다. 물에 쉽게 풀리는 이암의 경우 활성도가 높은 스멕타이트 군의 점토광물이 많이 포함되어 있는 것으로 나타났다. 채취한 암석을 소형 정육면체로 가공한 다음 일축압축시험을 실시하여 암석의 건조 및 포화 상태에 따른 일축압축강도를 비교하였다. 또한, 전자레인지를 이용하여 암석 공극 내 물을 가열시켜 내부에서 균열이 발생하도록 유도하였으며, 작동시간을 달리하여 내부 균열의 발생 정도에 따른 강도를 비교하였다. 건조된 셰일과 이암의 일축압축강도는 평균 62MPa, 11MPa이며, 이를 포화시키면 일축압축강도는 셰일은 평균 33MPa, 이암은 4MPa로 47% 및 64% 정도 감소하였다. 전자레인지로 15초 작동시켜 균열을 유발할 경우 포화 상태보다 셰일은 49%, 이암은 52% 정도 강도가 감소하였다. 20초 정도 작동 시 대부분의 암석이 여러 조각으로 파쇄되었으며, 이때 소형 암석 내부의 온도는 200도 정도였다.

Keywords

GJBGC4_2018_v34n12_29_f0001.png 이미지

Fig. 1. Mudstone 2 before and after soaking

GJBGC4_2018_v34n12_29_f0002.png 이미지

Fig. 2. SEM photographs of the specimens at ×5000 magnification and result of XRD analysis (a) Red shale 1, (b) Red shale 2, (c)Mudstone 1 (d) Mudstone 2

GJBGC4_2018_v34n12_29_f0003.png 이미지

Fig. 3. Result of slake durability test

GJBGC4_2018_v34n12_29_f0004.png 이미지

Fig. 4. Rock samples (Red shale 1, Red shale 2, Mudstone 1)

GJBGC4_2018_v34n12_29_f0005.png 이미지

Fig. 5. Saturation time for rocks

GJBGC4_2018_v34n12_29_f0006.png 이미지

Fig. 6. UCS of dry and saturated samples

GJBGC4_2018_v34n12_29_f0007.png 이미지

Fig. 7. Dry (left) and saturated (right) shale specimens after microwave oven operation and temperature

GJBGC4_2018_v34n12_29_f0008.png 이미지

Fig. 8. Capsule and remolded specimen

GJBGC4_2018_v34n12_29_f0009.png 이미지

Fig. 9. Crack development due to microwave oven operation

GJBGC4_2018_v34n12_29_f0010.png 이미지

Fig. 10. UCS of saturated and microwave

GJBGC4_2018_v34n12_29_f0011.png 이미지

Fig. 11. Specimens after microwave oven operation and temperature

GJBGC4_2018_v34n12_29_f0012.png 이미지

Fig. 12. Rock temperature increase by drying oven and microwave oven

Table 1. Physical properties of sedimentary rocks

GJBGC4_2018_v34n12_29_t0001.png 이미지

Table 2. Quantitative analysis on specimens of composition using WDS system in EPMA

GJBGC4_2018_v34n12_29_t0002.png 이미지

Table 3. Results of various strength tests for sedimentary rocks

GJBGC4_2018_v34n12_29_t0003.png 이미지

Table 4. Summary of unconfined compression tests under dry and saturated conditions

GJBGC4_2018_v34n12_29_t0004.png 이미지

Table 5. Summary of unconfined compression tests under saturated and microwave conditions

GJBGC4_2018_v34n12_29_t0005.png 이미지

References

  1. An, H. S. and Lee, S. D. (2016), "Reinforcing Effects of Bolting in Jointed Rock Mass", International Journal of Geo-Engineering, Volume 7, Paper no. 10, DOI 10.1186/s40703-016-0024-9.
  2. ASTM D 2938 (2002), Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens.
  3. ASTM D 4644 (2004), Standard Test Method for Slake Durability of Shales and Similar Weak Rocks.
  4. Bahrani, N. and Kaiser, P.K. (2017), "Estimation of Confined Peak Strength of Crack-Damaged Rocks", Rock mechanics and rock engineering, 50(2), pp.309-326. https://doi.org/10.1007/s00603-016-1110-1
  5. Baud, P., Wong, T.F., and Zhu, W. (2014), "Effects of Porosity and Crack Density on the Compressive Strength of Rocks", International Journal of Rock Mechanics and Mining Sciences, Vol.67, pp.201-211.
  6. Broch, E. (1979), "Changes in rock strength caused by water", International Society for Rock Mechanics and Rock Engineering.
  7. BS EN 1926 (2006), Natural Stone Test Methods - Determination of Uniaxial Compressive Strength.
  8. Celik, S.B. (2017), "The effect of cubic specimen size on uniaxial compressive strength of carbonate rocks from Western Turkey", Arabian Journal of Geosciences, Vol.10, DOI 10.1007/s12517-017- 3218-3.
  9. Chen, T.T., Dutrizac, J.E., Haque, K.E., Wyslouzil, W., and Kashyap, S. (1984), "The Relateve Transparency of Minerals to Microwave Radiation", Canadian Metallurgical Quarterly, Vol.23, No.3, pp. 349-351. https://doi.org/10.1179/cmq.1984.23.3.349
  10. Chung, H.S. and You, B.O. (1997), "A Study on Variation of Rock Strength due to Weathering and Its Estimation", Journal of the Korean Geotechnical Society, Vol.13, No.6, pp.71-93.
  11. Colback, P.S.B. and Wild, B.L. (1965), "The Influence of Moisture Content on the Compressive Strength of Rocks", Society of Exploration Geophysicists, No.0, pp.65-83.
  12. Ferri, H., Pejman, M.N., and Nima, G. (2016), "The Influence of Microwave Irradiation on Rocks for Microwave-assisted Underground Excavation", Journal of Rock Mechanics and Geotechnical Engineering, Vol.8, No.1, pp.1-15. https://doi.org/10.1016/j.jrmge.2015.10.004
  13. Gray, W.M. (1965), "Surface spalling by thermal stresses in rocks", Proceedings Rock Mechanics Symposium.
  14. Griffith, A.A. (1921), "The Phenomena of Rupture and Flow in Solids", The Philosophical Transactions of the Royal Society London (Series A), Vol.221, pp.163-198. https://doi.org/10.1098/rsta.1921.0006
  15. Griffiths, D.J. (2005), "Introduction to Electrodynamics", American Journal of Physics, Vol.73, No.6.
  16. Han, M.D., Cai, Z.X., Qu, G.Y., and Jin, L.S. (2017), "Dynamic Numerical Simulation of Cutterhead Loads in TBM Tunneling", Tunnelling and Underground Space Technology, Vol.70, pp.286-298. https://doi.org/10.1016/j.tust.2017.08.028
  17. Hassani, F., Nekoovaght, P.M., and Gharib, N. (2016), "The Influence of Microwave Irradiation on Rocks for Microwave-assisted Underground Excavation", Journal of Rock Mechanics and Geotechnical Engineering, Vol.8, No.1, pp.1-15. https://doi.org/10.1016/j.jrmge.2015.10.004
  18. Hawkins, A.B. and Mcconnell, B.J. (1992), "Sensitivity of Sandstone Strength and Deformability to Changes in Moisture Content", Quarterly Journal of Engineering Geology and Hydrogeology, Vol.25, No.2, pp.115-130. https://doi.org/10.1144/GSL.QJEG.1992.025.02.05
  19. Hawkins, A.B. (1998), "Aspects of Rock Strength", Bulletin of Engineering Geology and the Environment, Vol.57, No.1, pp.17-30. https://doi.org/10.1007/s100640050017
  20. Hoek, E. (1965), "Rock fracture under static stress conditions", Pretoria, South Africa: Council for Scientific and Industrial Research Report MEG 383.
  21. Hoek, E. and Brown, E.T. (1980), "Empirical Strength Criterion for Rock Masses", Journal of Geotechnical and Geoenvironmental Engineering, Vol.106, No.GT9, pp.1013-1035.
  22. Jeong, G.B., Noh, K.M., Yoo, K.H., and Lee, Y.H. (2006), "The Strength Softening Characteristics of Pohang Mudstone due to Weathering", Journal of Korean Society of Civil Engineers, Vol. 2006, No.10, pp.3829-3832.
  23. Kegang, L. and Zhang, Y. (2016), "Damage Constitutive Model for Rock Considering Cyclic Drying-Wetting Effect and Its Experimental Validation", Electronic Journal of Geotechnical Engineering, Vol.21, No.1, pp.277-286.
  24. Kim, G.W., Paik, Y.S., and Park, D.K. (1999), "Slope Failures in Sedimentary Rocks in Kyoungsang Basin", 11th Asian Regional Conference on SMGE, special publication, pp.135-140.
  25. Kim, Y.S., Kim, G.W., Heo, N.Y., Rui, D.H., and Lee, J.H. (2001), "A Study on the Geotechnical Assessment of Sedimentary Rock due to Weathering in Taegu area", Journal of the Engineering Geology, Vol.2001, No.-, pp.15-22.
  26. KS E 3033 (2001), Method of test for compressive strength of rock.
  27. KS F 2519 (2000), Testing method for compressive strength of natural building stone.
  28. Kwag, S.M., Jung Y.W., and Kim, G.W. (2013), "Engineering Properties of Red Shale and Black Shale of the Daegu Area, Korea", Journal of the Engineering Geology, Vol.23, No 4, pp. 341-352. https://doi.org/10.9720/kseg.2013.4.341
  29. Lee, S.G. and Lee, S. (1995), "A Suggested Method to Predict Uniaxial Compressive Strength of Korean Granites by Schmidt Hammer Value", Journal of Korean Society of Civil Engineers, Vol.15, No.-, pp.199-210.
  30. Maurer, W.C. (1968), "Novel drilling techniques", maurerengineering.com.
  31. McClintock, F.A. and Walsh, J.B. (1962), "Friction on Griffith cracks in rock under pressure", Proceedings of the 4 th US national congress on applied mechanics, Vol.2, pp.1015-2021.
  32. Min, T.K., Moon, J.K., and Lee, S.I. (2009), "Suggestions of a New Method for Schmidt Hammer Blowing and Data Analysis on Rocks (II)", Journal of Korean Society for Rock Mechanics, Vol.19, No.5, pp.421-431.
  33. Mogi, K. (1962), "The Influence of Dimensions of Specimens of the Fracture Strength of Rocks-comparison between the Strength of Rock Specimens and that of the Earth's Crust", Bull. Earthq. Res. Inst., Univ. Tokyo, Vol.40, pp.175-185.
  34. Park, S.S., Ye, S.R., and Kim, G.W. (2016), "Slaking Characteristics of Shale in the Gyoungsang Super-group, Korea", The Journal of Engineering Geology, Vol.26, No.3, pp.315-324. https://doi.org/10.9720/kseg.2016.3.315
  35. Scharli, U. and Rybach, L. (2001), "Determination of Specific Heat Capacity on Rock Fragments", Geothermics, Vol.30, No.1, pp. 93-110. https://doi.org/10.1016/S0375-6505(00)00035-3
  36. Thuro, K., Plinninger, R.J., Zah, S., and Schutz, S. (2001), "Scale Effects in Rock Strength Properties. Part 1 : Unconfined Compressive Test and Brazilian Test", ISRM Regional Symposium EUROCK 2001, Rock Mechanics - a Challenge for Society, pp. 169-174.
  37. Van der Merwe, J. N. (2003), "A Laboratory Investigation into the Effect of Specimen Size on the Strength of Coal Samples from Different Areas", Journal of the Southern African Institute of Mining and Metallurgy, Vol.103, No.5, pp.273-279.
  38. Vasarhelyi, B. (2005), "Technical Note Statistical Analysis of the Influence of Water Content on the Strength of the Miocene Limestone", Journal of Informatio Systems, Vol.19, No.2, pp.191-210. https://doi.org/10.2308/jis.2005.19.2.191
  39. Walkiewicz, J.W., Clark, A.E., and McGill, S.L. (1991), "Microwaveassisted Grinding", IEEE Transactions on Industry Applications, Vol.27, No.2, pp.239-243. https://doi.org/10.1109/28.73604
  40. Wang, X. Q., Schubnel, Am Fortin, J. Gueguen, Y., and Ge, H.K. (2013), "Physical Properties and Brittle Strength of Thermally Cracked Granite under Confinement", Journal of Geophysical Research: Solid Earth, Vol.118, pp.6099-6112. https://doi.org/10.1002/2013JB010340
  41. Zhang, Z., Jiang, Q., Zhou, C., and Liu, X. (2014), "Strength and Failure Characteristics of Jurassic Red-Bed Sandstone under Cyclic Wetting-drying Conditions", GeoPhysical Journal International, Vol.198, No.2, pp.1034-1044. https://doi.org/10.1093/gji/ggu181
  42. Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., and Li, X. (2016), "Strength Characteristics of Dry and Saturated Rock at Different Strain Rates", Transactions of Nonferrous Metals Society of China, Vol.26, No.7, pp. 1919-1925. https://doi.org/10.1016/S1003-6326(16)64314-5