DOI QR코드

DOI QR Code

Study on Factors Affecting Financial Customer's Switching Intention to Internet only bank: Focus on Kakao bank

인터넷 전문은행의 성공 요건, 금융 소비자의 전환의도에 영향 주는 요인 분석: 카카오뱅크를 중심으로

  • Kwak, Na-Yeon (Graduate School of Information, Yonsei University) ;
  • Yoo, Hyein (Graduate School of Information, Yonsei University) ;
  • Lee, Choong C. (Graduate School of Information, Yonsei University)
  • Received : 2018.01.14
  • Accepted : 2018.02.20
  • Published : 2018.02.28

Abstract

Internet only banking has been spreading rapidly since it was first introduced in Korea since 2017, but issues regarding its limitations continuously are rising. In this research, consumers' intention to switch have been empirically demonstrated toward the internet banking by applying the PPM theory. To achieve a purpose of the research, survey targeting total 132 person who have experiences of using KaKaobank have been implemented by using Smart PLS 3.0. In conclusion, it has been verified that the push and full effect have a positive effect on the consumers' intention to switch main bank and the degree of usage of KaKaobank have significantly influences on relation between mooring factor and consumers' intention to switch main bank. Through this study, the scope of the PPM theory applied in previous researches regarding consumer's service transition shall be extended to Fintech service and practically it provides implications for establishing a strategy to enter the Internet only bank market.

인터넷 전문은행은 2017년 국내에 처음 도입된 이후 빠르게 확산되고 있지만 그 한계점에 대한 이슈 역시 계속 대두되고 있다. 특히 점차 경쟁이 심화되는 핀테크 시장에서 인터넷 전문은행의 지속적 성장을 위해 금융소비자에 대한 이해가 중요하다. 이에 본 연구는 인터넷 전문은행에 대한 소비자 태도 실증을 위해 서비스 전환의도 분석에 다수 활용된 PPM 이론을 적용하여 금융소비자의 서비스 전환의도를 확인하였다. 연구 목적 달성을 위해 카카오뱅크 사용자를 대상으로 설문을 진행하여 수거한 총 132부의 데이터를 Smart PLS 3.0을 통해 분석을 수행하였다. 결론적으로 푸시효과와 풀효과가 주거래은행 전환의도에 정(+)의 영향을 미치는 것을 확인하고, 무어링효과가 주거래 전환의도에 미치는 영향에 사용자의 카카오 뱅크 사용정도가 영향을 미치는 것을 확인하였다. 본 연구를 통해 기존 서비스 전환 연구에 활용되던 PPM이론의 활용 범위를 핀테크 서비스로 확장 하였으며, 실무적으로 인터넷 전문은행 확산 전략 수립에 유효한 시사점을 제공할 것이다. 또한 향후 이를 바탕으로 인터넷 전문은행의 다양한 소비자 태도를 설명하는 연구로 활용 할 수 있을 것이다.

Keywords

References

  1. H. S. Chin. (2017). Fintech Revolution and Finance Transformation. Software Policy & Research Institute. https://spri.kr
  2. C. S. Yum & J. B. Hong. (2004). An Empirical Study on the Factors Influencing Customer Satisfaction of Internet Banking. IE interfaces, 17(3), 305-313. UCI : G704-000228.2004.17.3.007.
  3. IL Ryu, S. S. Shin & S. H. So. (2006). An Empirical Study on the Factors Influencing the Acceptance of Mobile Banking Services. Journal of Information Technology Applications & Management, 13(2), 67-86. UCI : G704-000870.2006.13.2.010.
  4. Y. M. Kwon. (2015). A Study on the Affecting the Intention to Use of Smart-Phone Mobile Banking. Korea Industrial Economics Association, 28(1), 529-549. UCI : G704-001438.2015.28.1.016.
  5. D. J. Cheon. (2014). Trends and Implications of Overseas Internet Only Bank. Woori Finance Research Institute. http://www.wfri.re.kr.
  6. J. Y. Jun & E. J. Yeo. (2015). Analysis on the Effects of Introduction of Korean Internet Bank from an Industrial Organizational Perspective. Journal ofMoney & Finance, 29(4), 199-234. UCI: G704-000495. 2015.29.4.005.
  7. S. H. Ok & K.T. Hwang. (2017). A Study on the Development of the Korean Internet Bank. Journal of Digital Convergence, 15(12), 111-126, DOI : http://doi.org/10.14400/JDC.2017.15.12.111.
  8. C. H. Kim. (2005). Forcasts and Challenges for the Establishment of Internet Primart Bank. The Bank of Korea, 13, 61-68.
  9. J. W. Kim. (2009). A Study on The Switching Intention to the Internet Primary Bank affected by Internet Banking Users Satisfaction. Korea Society of IT Services, 89-98.
  10. D. H. Cho & H. G. Lee. (2009). The Critical Success Factors of Internet Banks and Considerable Points When Introducing into Domestic Markets. The Journal of the Korea Contents Association, 9(12), 600-612. UCI : G704-001475.2009.9.12.047. https://doi.org/10.5392/JKCA.2009.9.12.600
  11. J. T. Kim & J. H. Kim. (2009). Comparative Research on the Key Success Factor of e-Bank Business Model : The Business Case of the American, European, and Japanese Firm. Journal of e-Business Studies, 10(5), 21-49. DOI :10.15719/geba.10.5.200912.21.
  12. H. S. Yang. (2005). A Study of Market Entry Internet-Only Bank. Korea Academy Society of e-Business, 6(1), 179-202.
  13. KPMG Media Release. (2015). Mobile banking users will double and hit a quarter of the world's population by 2019. https://assets.kpmg.com/xx/en/home.html.
  14. D. S. Kim. (2015). Mobile finance with fire… Strengthening smartphone loan service for the largest shareholder braking of the Internet Bank. Maeil Business Newspaper. http://news.mk.co.kr/newsRead. php?year=2015&no=748067.
  15. Carpenter, G. S., & Lehmann, D. R. (1985). A model of marketing mix, brand switching, and competition. Journal of Marketing Research, 318-329. DOI : 10.2307/3151428.
  16. Keaveney, S. M. (1995). Customer switching behavior in service industries: An exploratory study. The Journal of Marketing, 71-82. DOI : 10.2307/1252074.
  17. Blinn, J. D., Duncan, S. R., & Goodwin, B. (1991). 1990 Cost of Risk Survey: A Yardstick for Managers. Risk Management, 38(2), 46.
  18. Bitner, M. J. (1990). Evaluating service encounters: the effects of physical surroundings and employee responses. the Journal of Marketing, 69-82. DOI : 10.2307/1251871.
  19. Givon, M. (1984). Variety seeking through brand switching. Marketing Science, 3(1), 1-22. DOI : 10.1287/mksc.3.1.1.
  20. C. H. Lee, H. J. Yun, C. H. Lee & C. C. Lee. (2015). Factors Affecting Continuous Intention to Use Mobile Wallet: Based on Value-based Adoption Model. The Journal of Society for e-Business Studies, 20(1), 117-135. DOI : 10.7838/jsebs.2015.20.1.117,
  21. D. H. Jung, H. S. Chang & G. O. Park. (2017). A Study on the Environment Characteristics and Continuous Usage Intention for Improvement of Fintech. The Journal of Information Systems, 26(2), 123-142. DOI : 10.5859/KAIS.2017.26.2.123.
  22. Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). "Migrating" to new service providers: Toward a unifying framework of consumers' switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115. DOI : 10.1177/0092070304267928.
  23. H.W Jang, N.Y Kwak & Choong C. Lee. (2017). J. S. Chung, M. H. Oh & H. S. Han. (2015). Study on Factors Affecting Intention of Switching China's Mobile Telecommunication Service - Focusing on PPM Theory. Journal of Digital Convergence, 15(7), 37-46. DOI : http://doi.org/10.14400/JDC.2017.15.7.169.
  24. G. H. Kim, H. H. Suh, Hun Yoo & J. I. Choi. (2017). A Study on the Factors Affecting Switching Intention of Public Certificate Storage : Focused on Smart Certificate(USIM). Korea Society of IT Services, 16(1), 99-118. DOI : 10.9716/KITS.2017.16.1.099.
  25. S. K. Choi, B. D. Han & K. S. Han. (2017). The Factors Affecting the Switching Intention of Users to New Integrated Terminal Systems of Mutual Financial Companies. The Journal of Internet Electronic Commerce Research, 17(3), 1-17. https://doi.org/10.1007/s10660-017-9252-0
  26. Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase intentions in services. Journal of retailing, 76(2), 259-274. DOI : 10.1016/s0022-4359(00)00024-5.
  27. Sabherwal, R., Jeyaraj, A., & Chowa, C. (2006). Information system success: individual and organizational determinants. Management science, 52(12), 1849-1864. DOI : 10.1287/mnsc.1060.0583.
  28. Oliver, R. L., & Bearden, W. O. (1985). Crossover effects in the theory of reasoned action: A moderating influence attempt. Journal of consumer research, 12(3), 324-340. DOI : 10.1086/208519.
  29. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. DOI : 10.2307/30036540.
  30. Hyun Baek, T., & Whitehill King, K. (2011). Exploring the consequences of brand credibility in services. Journal of Services Marketing, 25(4), 260-272. DOI : 10.1108/08876041111143096.
  31. Gunasekaran, A., & Ngai, E. W. T. (2003). The successful management of a small logistics company. International Journal of Physical Distribution & Logistics Management, 33(9), 825-842. DOI : 10.1108/09600030310503352.
  32. Buellingen, F., & Woerter, M. (2004). Development perspectives, firm strategies and applications in mobile commerce. Journal of Business Research, 57(12), 1402-1408. DOI : 10.1016/s0148-2963(02)00429-0.
  33. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perc. Journal of retailing, 64(1), 12.
  34. Kim, S. H. (2014). Moderating Effects of Handset Subsidy on the Mobile Communication Service Switching Intention. The Journal of the Korea Contents Association, 14(11), 389-397. DOI : https://doi.org/10.5392/jkca.2014.14.11.389.
  35. Zhang, K. Z., Cheung, C. M., & Lee, M. K. (2012). Online service switching behavior: The case of blog service providers. Journal of Electronic Commerce Research, 13(3), 184.
  36. Gefen, D., Straub, D. W., & Rigdon, E. E. (2011). An update and extension to SEM guidelines for admnistrative and social science research. Management Information Systems Quarterly, 35(2), iii-xiv. DOI : 10.2307/23044042.
  37. Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the Association for Information systems, 16(1), 5.
  38. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Prentice-Hall, New Jersey.
  39. Chin, W. W. (2001). PLS-graph manual, version 3.0. Unpublished manuscript.
  40. S.I Hong, B.S Kim. (2016). A Study on Antecedents of Game User Participation Intention in User Community in an Era of Convergence. Journal of Digital Convergence, 14(8), 185-194, DOI : http://doi.org/10.14400/JDC.2016.14.8.185.
  41. Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of consumer research, 30(2), 199-218. DOI : 10.1086/376806.
  42. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
  43. Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Hilsdale. NJ: Lawrence Earlbaum Associates, 2. DOI : 10.4324/9780203771587.