DOI QR코드

DOI QR Code

스마트 가전의 전환의도에 영향을 미치는 요인에 관한 연구 : Push-Pull-Mooring의 관점

Switching Intention of Smart Appliance : A Perspective of the Push-Pull-Mooring Framework

  • Park, HyunSun (BK21+, School of Business Administration, Kyungpook National University) ;
  • Kim, Sanghyun (School of Business Administration, Kyungpook National University)
  • 투고 : 2017.12.12
  • 심사 : 2018.02.20
  • 발행 : 2018.02.28

초록

4차 산업혁명을 주도할 차세대 정보기술들이 발전하면서 다양한 산업 분야에서 이를 융합한 제품이 출시되고 있으며 스마트 가전은 차세대 기술과 플랫폼이 가전제품에 적용된 것으로 소비자들의 욕구를 충족시켜줄 미래의 핵심유망 산업으로 주목받고 있다. 이에 본 연구는 Push-Pull-Mooring 프레임워크를 기반으로 소비자들이 스마트 가전으로 전환하려는 행동의도에 어떤 요인들이 영향을 미치는지를 실증분석을 통해 살펴보고자 한다. 본 연구의 목적을 위해 217명의 자료를 수집하여 AMOS 22.0를 이용해 분석하였다. 연구결과, 기능적 결핍, 비용적 결핍, 대안매력도는 전환의도에 정(+)의 영향을 미치는 것으로 나타났으며 낮은 전환비용은 기능적 결핍, 비용적 결핍, 대안매력도와 전환의도 간의 관계 강화하는 것으로 나타났다. 본 연구의 결과는 스마트 가전에 주목하고 있는 기업에 소비자들을 유인하기 위해 고려해야 하는 요소들을 이해할 수 있는 유용한 정보 제공할 수 있을 것으로 기대한다.

As the next generation technology, leading 4th industrial revolution has been progressed, the goods and services converged by the technology are being released in a market. The smart appliances among them attracts users' attentions as a key promising industry. Thus, this study investigates the factors that influence switching intention to smart appliances based on Push-Pull-Mooring framework. We collected 217 survey responses and formed structural equation modeling with AMOS 22.0. The results show that functional deprivation, money deprivation, alternative attractiveness had an effect on the switching intention to smart appliances. In addition, low switching cost is related to the relationship between external variables and switching intention. The results expect to provide useful information to the smart appliance-related companies.

키워드

참고문헌

  1. National IT Industry Promotion Agency. (2012). Smart Appliance Strategy of Global Corporation, IT Spot Issue.
  2. Korea Technology and Information Promotion Agency for SMEs. (2017). Technology Roadmap for SME. 2017-2019.
  3. Korea Association of Smart Home. (2011, Spring). Smart era, Smart Information Appliance. Smart Home Focus. 44-51.
  4. D. G. Lee, S. J. Lee & B. J. Choi. (2012). An Empirical Study on Intentions to Use of Smart TV. Journal of Digital Convergence, 10(4), 107-118. https://doi.org/10.14400/JDPM.2012.10.4.107
  5. J. H. Park & M. K. Kim. (2016). Factors Influencing the Low Usage of Smart TV Services by the Terminal Buyers in Korea. Telematics and Informatics, 33(4), 1130-1140. DOI : 10.1016/j.tele.2016.01.001
  6. H. S. Bansal, S. F. Taylor & Y. S. James. (2005). Migrating to New Service Providers: Toward a Unifying Framework of Consumers' Switching Behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115. DOI : 10.1177/0092070304267928
  7. B. Moon. (1995). Paradigms in Migration Research: Exploring 'Mooring' as a Schema. Progress in Human Geography, 19(4), 504-524. DOI : 10.1177/030913259501900404
  8. H. T. Yi & M. S. Yeom. (2016). An Investigation into the Determination of Show-Rooming: Focused on Migration Theory. Journal of Korea Service Management Society, 17(4), 65-88. DOI : 10.15706/jksms.2016.17.4.004
  9. E. Ravenstein. (1889). The Laws of Migration: Second Paper. Journal of the Royal Statistical Society, 52(2), 241-305. https://doi.org/10.2307/2979333
  10. J. K. Hsieh, Y. C. Hsieh, H. C. Chiu & Y. C. Feng. (2012). Post-adoption Switching Behavior for Online Service Substitutes: A Perspective of the Push-Pull-Mooring Framework. Computers in Human Behavior, 28(5), 1912-1920. DOI : 10.1016/j.chb.2012.05.010
  11. H. H. Chang, K. H. Wong & S. Y. Li. (2017). Applying Push-Pull-Mooring to Investigate Channel Switching Behaviors: M-Shopping Self-Efficacy and Switching Costs as Moderators. Electronic Commerce Research and Applications, 24, 50-67. DOI : 10.1016/j.elerap.2017.06.002
  12. Y. H. Fang & K. Tang. (2017). Involuntary Migration in Cyberspaces: The Case of MSN Messenger Discontinuation. Telematics and Informatics, 34, 177-193. DOI : 10.1016/j.tele.2016.05.004
  13. Y. Sun, D. Liy, S., Chen, X. Wu & X. L. Shen. (2017). Understanding Users' Switching Behavior of Mobile Instant Messaging Applications: An Empirical Study from the Perspective of Push-Pull-Mooring Framework. Computers in Human Behavior, 75, 727-738. DOI : 10.1016/j.chb.2017.06.014
  14. Y. Xu, Y. Yang, Z. Cheng & J. Lim. (2014). Retaining and Attracting Users in Social Networking Services: An Empirical Investigation of Cyber Migration. Journal of Strategic Information Systems, 23, 239-253. DOI : 10.1016/j.jsis.2014.03.002
  15. I. C. Chang, C. C. Liu & K. Chen. (2014). The Push, Pull and Mooring Effects in Virtual Migration for Social Networking Sites. Information Systems Journal, 24(4), 323-346. DOI : 10.1111/isj.12030
  16. K. Wu, J. Vassileva & Y. Zhao. (2017). Understanding Users' Intention to Switch Personal Cloud Storage Services: Evidence from the Chinese Market. Computers in Human Behavior, 68, 300-314. DOI : 10.1016/j.chb.2016.11.039
  17. X. Peng, Y. Zhao, & Q. Zhu. (2016). Investigating User Switching Intention for Mobile Instant Messaging Application: Taking WeChat as an Example. Computers in Human Behavior, 64, 206-216. DOI : 10.1016/j.chb.2016.06.054
  18. H. W. Jang, N. Y, Kwak & C. C. Lee. (2017). Study on Factors Affecting Intention of Switching China's Mobile Telecommunication Service-Focusing on PPM Theory. Journal of Digital Convergence, 15(7), 169-180. DOI : 10.14400/JDC.2017.15.7.169
  19. J. U. Kim & S. T. Park. (2013). An Empirical Study on Factors Influencing a Consumer's Switching Behavioral Intention in the Internet Shopping Mall Environment. Journal of Digital Convergence, 11(1), 199-209. https://doi.org/10.14400/JDPM.2013.11.1.199
  20. C. Ye & R. Potter. (2011). The Role of Habit in Post-Adoption Switching of Personal Information Technologies: An Empirical Investigation. Communications of the Association for Information Systems, 28(1), 585-610.
  21. J. C. Nunnally. (1978). Psychometric Theory (2nd), New York: McGraw-Hill.
  22. D. W. Barclay, C. A. Higgins & R. L. Thompson. (1995). The Partial Least Squares(PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technology Studies, 2(2), 285-309.
  23. C. Fornell & D. F. Larcker. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388. DOI : 10.2307/3151335
  24. R. M. Baron & D. A. Kenny. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality & Social Psychology, 51(6), 1173-1182. DOI : 10.1037//0022-3514.51.6.1173
  25. G., Premkumar & K. Ramamurthy. (1995). The Role of Interorganizational and Organizational Factors on the Decision Model for Adoption of Interorganizational Systems. Decision Sciences, 26(3), 303-336. DOI : 10.1111/j.1540-5915.1995.tb01431.x