참고문헌
- X1. Meng, Y. Qiang, S. Zhu, C. Fuhrman , JM. Siegfried & J. Pu.(2012). Illustration of the obstacles in computerized lung segmentation using examples. Med Phys, 39(8), 498-491. DOI: 10.1118/1.4737023
- M. S. Brown, M. F. McNitt-Gray, N. J. Mankovich, J. G. Goldin, J. Hiller, L. S. Wilson & D. R. Aberle.(1997). Method for segmenting chest CT image data using an anatomic model: Preliminary results. IEEE Trans. Medical Imaging. 16(6). 828-839. DOI: 10.1109/42.650879
- S. Hu, E. A. Hoffman & J. M. Reinhardt.(2001). Accurate Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images. IEEE Transactions on Medical Imaging. 20(6). 490-498. DOI: 10.1109/42.929615
- T. Kitasaka, K. Mori, J. Hasegawa & J. Toriwaki. (2003). Lung area extraction from 3-D chest X-ray CT images using a shape model generated bya variable Bezier surface. Syst. Comput. Jpn.. 34(4), 60-71. DOI: 10.1002/scj.1201
- Y.Y.Yim, H. L. Hong & Y. G. Shin. (2005). Automatic Lung Segmentation using Hybrid Approach. Journal of KIISE : Software and Applications. 32(7), 625-635. DOI: 10.1118/1.3147146
- D. Bartz, D. Mayer, J. Fischer & S. Ley.(2003). Hybrid Segmentation and Exploration of the Human Lungs. Proc. of IEEE Visualization, 14(3), 177-184. DOI:10.1109/VISUAL.2003.1250370
- Y. Masutani, H. MacMahon & K. Doi.(2002). Computerized Detection of Pulmonary Embolism in Spiral CT Angiography Based on Volumetric Image Analysis. IEEE Transactions on Medical Imaging. 21(12), 1517-1523. DOI: 10.1109/TMI.2002.806586
- J. Pu, D. S. Paik, X. Meng, J. E. Roos & G. D. Rubin.(2011). Shape break and-repair strategy and its application to automated medical image segmentation. IEEE Transactions on Visualization and Computer Graphics. 17(1), 115-124. DOI: 10.1109/TVCG.2010.56
- A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E.J. Feuer & M. J. Thun. (2005). Cancer statistics 2005. A Cancer Journal for Clinicians. 55(1), 10-30. DOI: 10.3322/canjclin.55.1.10
- J. Wang, Q. Li & F. Li.(2009). Automated segmentation of lungs with severe interstitial lung disease in CT. Med. Phys. 36(10), 4592-4599. DOI: 10.1118/1.3222872
- I. Sluimer, M Prokop. & B. van Ginneken. (2005). Toward automated segmentation of the pathological lung in CT. IEEE Trans. Med. Imag. 24(8), 1025-1038. DOI: 10.1109/TMI.2005.851757
- Y. H. Shi, F. H. Qi, Z. Xue, L. Y. Chen, K. K Ito, H. Matsuo & D. Shen.(2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE trans. Med. Imag. 27(4), 481-494. DOI: 10.1109/TMI.2007.908130
- A. A. Farag & J. H. Graham. (2013). A novel approach for lung nodules segmentation in chest CT using Levelsets. IEEE Trans image processing. 22(2), 5202-5213. DOI: 10.1109/TIP.2013.2282899
- M. Rogers & J. Graham.(2002). Robust active shape model search. Proceedings of the European Conference on Computer Vision. 1(1), 517-530. DOI : https://doi.org/10.1007/3-540-47979-1_35
- M. J. Shin & D. Y. Kim.(2012). Pulmonary vascular Segmentation and Refinement On the CT Scans. The Journal of the Korean Institute of Information and Communication Engineering. 16(3), 591-597. DOI : 10.6109/jkiice.2012.16.3.591
- S. H. Lee et al.(2014). A Study on the Usefulness of 3D Imaging in Micro-CT for Observing the Microstructure of Mice. Journal of Digital Convergence. 12(3), 367-375. DOI: 10.14400/JDC.2014.12.3.367