References
- Azizi, M., Sapoval, M., Gosse, P., Monge, M., Bobrie, G., Delsart, P., Midulla, M., Mounier-Vehier, C., Courand, P., Lantelme, P., Denolle, T., Dourmap-Collas, C., Trillaud, H., Pereira, H., Plouin, P. and Chatellier, G. Renal Denervation for Hypertension (DENERHTN) investigators. 2015. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385, 1957-1965. https://doi.org/10.1016/S0140-6736(14)61942-5
- Barajas, L., Powers, K. and Wang, P. 1984. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247, F50-F60.
- Booth, L., Schlaich, M., Nishi, E., Yao, S., Xu, J., Ramchandra, R., Lambert, G. and May, C. 2015. Short-term effects of catheter-based renal denervation on cardiac sympathetic drive and cardiac baroreflex function in heart failure. Int. J. Cardiol. 190, 220-226. https://doi.org/10.1016/j.ijcard.2015.03.440
- Chobanian, A., Bakris, G., Black, H., Cushman, W., Green, L., Izzo, J. L. Jr., Jones, D., Materson, B., Oparil, S., Wright, J. Jr. and Roccella, E. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. 2003. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 289, 2560-2572. https://doi.org/10.1001/jama.289.19.2560
- Cutler, J., Sorlie, P., Wolz, M., Thom, T., Fields, L. and Roccella, E. 2008. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-1994 and 1999-2004. Hypertension 52, 818-827. https://doi.org/10.1161/HYPERTENSIONAHA.108.113357
- DiBona, G. and Kopp, U. 1997. Neural control of renal function. Physiol. Rev. 77, 75-197. https://doi.org/10.1152/physrev.1997.77.1.75
- DiBona, G. 2005. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R633-R641. https://doi.org/10.1152/ajpregu.00258.2005
- Dinarello, C. 1996. Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147.
- Donazzan, L., Mahfoud, F., Ewen, S., Ukena, C., Cremers, B., Kirsch, C., Hellwig, D., Eweiwi, T., Ezziddin, S., Esler, M. and Bohm, M. 2016.ellH Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin. Res. Cardiol. 105, 364-371. https://doi.org/10.1007/s00392-015-0930-4
- Esler, M. 2000. The sympathetic system and hypertension. Am. J. Hypertens. 13, S99-S105.
- Elser, M., Rumantir, M., Kaye, D., Jennings, G., Hastings, J., Socratous, F. and Lambert, G. 2001. Sympathetic nerve biology in essential hypertension. Clin. Exp. Pharmacol. Physiol. 28, 986-989. https://doi.org/10.1046/j.1440-1681.2001.03566.x
- Esler, M. 2010. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanism to medical management. J. Appl. Physiol. 108, 227-237.
- Esler, M., Krum, H., Sobotka, P., Schlaich, M., Schmieder, R. and Bohm, M. 2010. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 Trial): a randomized controlled trial. Lancet 376, 1903-1909. https://doi.org/10.1016/S0140-6736(10)62039-9
- Fantuzzi, G., Puren, A., Harding, M., Livingston, D. and Dinarello, C. 1998. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1 beta-converting enzyme (caspase-1)-deficient mice. Blood 91, 2118-2125.
- Franchi, L., Eigenbrod, T., Munoz-Planillo, R. and Nunez, G. 2009. The inflammasome: a caspase-1-activation paltform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241-247.
- Hu, J., Li, Y., Cheng, W., Yang, Z., Wang, F., Lv, P., Niu, C., Hou, Y., Yan, Y. and Ge, J. 2014. A comparison of the efficacy of surgical renal denervation and pharmacologic therapies in post-myocardial infarction heart failure. PLoS One 9, e96996. https://doi.org/10.1371/journal.pone.0096996
- Huang, B., Yu, L., He, B., Wang, S., Lu, Z., Liao, K., Wang, Z., Zhou, X., He, W. and Jiang, H. 2015. Sympathetic denervation of heart and kidney induces similar effects on ventricular electrophysiological properties. EuroIntervention 11, 598-604. https://doi.org/10.4244/EIJV11I5A119
- James, P., Oparil, S., Carter, B., Cushman, W., Dennison-Himmelfarb, C., Handler, J., Lackland, D., LeFevre, M., MacKenzie, T., Ogedegbe, O., Smith, S. Jr., Svetkey, L., Taler, S., Townsend, R., Wright, J. Jr., Narva, A. and Ortiz, E.. 2014. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 311, 507-520. https://doi.org/10.1001/jama.2013.284427
- Kiuchi, M. G., Chen, S., E. Silva, G. R., Paz, L. M., Kiuchi, T., de Paula Filho, A. G. and Souto, G. L. 2016. Pulmonary vein isolation alone and combined with renal sympathetic denervation in chronic kidney disease patients with refractory atrial fibrillation. Kidney Res. Clin. Pract. 35, 237-244. https://doi.org/10.1016/j.krcp.2016.08.005
- Kjeldsen, S., Fadl Elmula, F. and Persu, A. 2015. The setback of renal denervation should not backfire on sympathetic overactivity in hypertension. J. Am. Coll. Cardiol. 65, 1322-1323. https://doi.org/10.1016/j.jacc.2015.01.038
- Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P., Sadowski, J., Bartus, K., Kapelak, B., Walton, A., Sievert, H., Thambar, S., Abraham, W. T. and Esler, M. 2009. Catheter-based renal sympathetic denervation for resistant hypertension: multicentre safety and proof-of-principle cohort study. Lancet 373, 1275-1281. https://doi.org/10.1016/S0140-6736(09)60566-3
- Krum, H., Sobotka, P., Mahfoud, F., Bohm, M., Esler, M. and Schlaich, M. 2011. Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation 123, 209-215. https://doi.org/10.1161/CIRCULATIONAHA.110.971580
- Li, Z., Jiang, H., Chen, D., Liu, Q., Geng, J., Guo, J., Sun, R., Zhu, G. and Shan, Q. 2015. Renal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload. Physiol. Res. 64, 653-662.
- Sarafidis, P. and Bakris, G. 2008. Resistant hypertension, An overview of evaluation and treatment. J. Am. Coll. Cardiol. 52, 1749-1757. https://doi.org/10.1016/j.jacc.2008.08.036
- Schroder, K. and Tschopp, J. 2010. The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
- Schroder, K., Zhou, R. and Tschopp, J. 2010. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300. https://doi.org/10.1126/science.1184003
- Tsioufis, C., Papademetriou, V., Dimitriadis, K., Tsiachris, D., Thomopoulos, C., Park, E., Hata, C., Papalois, A. and Stefanadis, C. 2013. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int. J. Cardiol. 168, 987-992. https://doi.org/10.1016/j.ijcard.2012.10.038
- Zheng, X., Li, X., Lyu, Y., He, Y., Wan, W., Zhu, H. and Jiang, X. 2016. Possible mechanism by which renal sympathetic denervation improves left ventricular remodeling after myocardial infarction. Exp. Physiol. 101, 260-271. https://doi.org/10.1113/EP085302