DOI QR코드

DOI QR Code

Automated Driving Aggressiveness for Traffic Management in Automated Driving Environments

자율주행기반 교통운영관리를 위한 ADA 개념 정립 및 적용 기법 개발

  • LEE, Seolyoung (Transportation and Logistics Engineering, Hanyang University) ;
  • OH, Minsoo (Transportation and Logistics Engineering, Hanyang University) ;
  • OH, Cheol (Transportation and Logistics Engineering, Hanyang University) ;
  • JEONG, Eunbi (Future Transport Policy Research Division, Korea Railroad Research Institute)
  • 이설영 (한양대학교 교통.물류공학과) ;
  • 오민수 (한양대학교 교통.물류공학과) ;
  • 오철 (한양대학교 교통.물류공학과) ;
  • 정은비 (한국철도기술연구원 미래교통정책본부)
  • Received : 2017.11.22
  • Accepted : 2018.01.15
  • Published : 2018.02.28

Abstract

Emerging automated driving environments will lead to a mixed traffic flow depending on the interaction between automated vehicles (AVs) and manually driven vehicles (MVs) because the market penetration rate (MPR) of AVs will gradually increase over time. Understanding the characteristics of mixed traffic conditions, and developing a method to control both AV and MV maneuverings smoothly is a backbone of the traffic management in the era of automated driving. To facilitate smooth vehicle interactions, the maneuvering of AVs should be properly determined by various traffic and road conditions, which motivates this study. This study investigated whether the aggressiveness of AV maneuvering, defined as automated driving aggressiveness (ADA), affect the performance of mixed traffic flow. VISSIM microscopic simulation experiments were conducted to derive proper ADAs for satisfying both the traffic safety and the operational efficiency. Traffic conflict rates and average travel speeds were used as indicators for the performance of safety and operations. While conducting simulations, level of service(LOS) and market penetration rate(MPR) of AVs were also taken into considerations. Results implies that an effective guideline to manage the ADA under various traffic and road conditions needs to be developed from the perspective of traffic operations to optimize traffic performances.

자율주행자동차는 속도제어를 통해 교통류의 용량을 증대시키고, 위험 상황 발생 시 차량을 제어함으로써 인적요인으로 인한 사고를 감소시키는 첨단기술로 대두되고 있다. 그러나 자율차와 비자율차가 혼재되어 있는 상황에서 개별자율차의 주행행태가 인근 비자율차에 영향을 미쳐 교통류의 성능이 저하될 것이라는 기존 연구결과들이 꾸준히 발표되고 있다. 이러한 연구 결과는 자율주행환경에서 도로교통시스템의 운영효율성과 안전성을 증대시키기 위한 교통운영관리의 필요성을 나타내며, 본 연구에서는 자율주행기반의 교통운영 관리를 위한 새로운 개념을 제안하고 이를 통한 교통운영관리 방안을 제시하고자 한다. 본 연구에서는 개별자율차의 주행특성을 반영한 자율주행강도라는 새로운 개념을 정의하였으며, 시뮬레이션 분석을 통해 자율주행강도에 따른 교통류의 변화와 적정 자율주행강도를 도출하는 방법론을 제시하였다. 분석 시나리오 설정 시 자율주행강도, 서비스수준, 시스템보급률, 사고유무를 고려하였으며, 운영효율성과 안전성 평가를 위해 주행속도와 상충건수를 평가지표로 활용하였다. 분석결과 시나리오 구성요소와 자율주행강도간의 관계를 파악하였으며, 운영효율성과 안전성 지표간의 패턴을 분석하였다. 통행자유도가 낮은 경우, 자율차의 주행 적극성이 높아질수록 안전성이 저하되는 것으로 나타났으며 소극적인 자율주행강도가 적정함을 확인하였다. 본 연구에서 제안한 자율주행강도는 자율주행시대의 새로운 교통운영관리 기법 및 전략 수립의 기반이 되어 보다 안전하고 효율적인 자율주행환경 구현에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Antoniou C., Celikoglu H. B., Geroliminis N. (2016), Special Issue on Advanced Network Traffic Management: From Dynamic State Estimation to Traffic Control, Transp. Res. Part C Emerg. Technol., 66(EPFL-ARTICLE-219722), 1-2. https://doi.org/10.1016/j.trc.2016.03.005
  2. Gueriau M., Billot R., El Faouzi N. E., Monteil J., Armetta F., Hassas S. (2016), How to Assess the Benefits of Connected Vehicles? A Simulation Framework for the Design of Cooperative Traffic Management Strategies, Transp. Res. Part C Emerg. Technol., 67, 266-279. https://doi.org/10.1016/j.trc.2016.01.020
  3. Jain Y. K., Bhandare S. K. (2011), Min Max Normalization Based Data Perturbation Method for Privacy Protection, Int. J. Eng. Res. Appl., 2(8), 45-50.
  4. Jeong E, Oh C., Kim Y. (2015), Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions, J. Korean Soc. Transp., 33(3), Korean Society of Transportation, 256-267. https://doi.org/10.7470/jkst.2015.33.3.256
  5. Jeong E., Oh C. (2017), Evaluating the Effectiveness of Active Vehicle Safety Systems, Accid. Anal. Prev, 100, 85-96. https://doi.org/10.1016/j.aap.2017.01.015
  6. Jeong E., Oh C., Lee S. (2017), Is Vehicle Automation Enough to Prevent Crashes? Role of Traffic Operations in Automated Driving Environments for Traffic Safety, Accid. Anal. Prev., 104, 115-124. https://doi.org/10.1016/j.aap.2017.05.002
  7. Kim S. H., Kim J. H., Do M. S., Shin E. K., Youn Y. H. (2016), Road Traffic ITS Theory and Design, Cheongmongak, Republic of Korea (도로교통 ITS 이론과 설계).
  8. Lee C., Jeong J. (2006), A Study on Providing Real-Time Route Guidance Information by Variable Massage Signs with Driver Behavior, J. Korean Soc. Transp., 24(7), Korean Society of Transportation, 65-79.
  9. Park H., Yoon S., Oh C. (2016), Development of an Algorithm for Dynamic Traffic Operations of Freeway Climbing Lane Toward Traffic Safety, J. Korean Soc. Transp., 34(1), Korean Society of Transportation, 68-80. https://doi.org/10.7470/jkst.2016.34.1.068
  10. PTV Group (2016), PTV Vissim 9.0 User Manual, PTV AG, Karlsruhe, Germany.
  11. Song T. J., Oh C. (2011), Agent-based Speed Management Strategy for Freeway Traffic Safety (Methodology and Evaluation), J. Korean Soc. Transp., 29(4), Korean Society of Transportation, 17-28.
  12. Talebpour A., Mahmassani H. S., Elfar A. (2017), Investigating the Effects of Reserved Lanes for Autonomous Vehicles on Congestion and Travel Time Reliability, J. Transp. Res. Board, 2622, Transportation Research Record, 1-12. https://doi.org/10.3141/2622-01
  13. UK Department of Transportation (2016), Impacts of Connected and Autonomous Vehicles on Traffic Flow Technical Report.
  14. Wang L., Abdel-Aty M., Lee J. (2017), Implementation of Active Traffic Management Strategies for Safety on Congested Expressway Weaving Segments, J. Transp. Res. Board, 2635, Transportation Research Record, 28-35. https://doi.org/10.3141/2635-04

Cited by

  1. For Preventative Automated Driving System (PADS): Traffic Accident Context Analysis Based on Deep Neural Networks vol.9, pp.11, 2018, https://doi.org/10.3390/electronics9111829
  2. 거시모형을 이용한 폐기물 차량 자율주행이 이산화탄소 배출량에 미치는 영향 분석 vol.17, pp.1, 2018, https://doi.org/10.15683/kosdi.2021.3.31.165