Acknowledgement
Supported by : National Natural Science Foundation of China
References
- ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary (ACI 318-14), American Concrete Institute, Farmington Hills, MI.
- Brena, F.S. and Ihtiyar, O. (2011), "Performance of conventionally reinforced coupling beams subjected to cyclic loading", J. Struct. Eng., 137(6), 665-676. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000316
- Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. (2005), "Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams", ACI Struct. J., 102(1), 159-166.
- Cheng, B. and Su, R.K. (2011), "Retrofit of deep concrete coupling beams by a laterally restrained side plate", J. Struct. Eng., 137(4), 503-512. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000276
- Federal Emergency Management Agency. (2000), "Prestandard and commentary for the seismic rehabilitation of buildings", Research Report No. FEMA 356, Federal Emergency Management Agency, Washington, D.C.
- Fischer, G. and Li, V.C. (2002), "Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions", ACI Struct. J., 99(6), 781-790.
- Fischer, G. and Li, V.C. (2003), "Deformation behavior of fiberreinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions", ACI Struct. J., 100(1), 25-35.
- Foltz, R.R., Lee, D.H. and LaFave, J.M. (2017), "Biaxial behavior of high-performance fiber-reinforced cementitious composite plates", Constr. Build. Mater., 143, 501-514. https://doi.org/10.1016/j.conbuildmat.2017.03.167
- Fortney, P.J., Rassati, G.A. and Shahrooz, B.M. (2008), "Investigation on effect of transverse reinforcement on performance of diagonally reinforced coupling beams", ACI Struct. J., 105(6), 781-788.
- Galano, L. and Vignoli, A. (2000), "Seismic behavior of short coupling beams with different reinforcement layouts", ACI Struct. J., 97(6), 876-885.
- GB 50010 (2010), Code for Design of Concrete Structures (GB 50010-2010), Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing.
- Gong, B. and Shahrooz, B.M. (2001), "Steel-concrete composite coupling beams-behavior and design", Eng. Struct., 23(11), 1480-1490. https://doi.org/10.1016/S0141-0296(01)00042-6
- Gong, B.N. and Fang, E.H. (1988), "Behavior of reinforced concrete coupling beams between shear walls under cyclic loading", J. Build. Struct., 9(1), 34-41.
- Han, S.W., Lee, C.S., Shin, M. and Lee, K. (2015), "Cyclic performance of precast coupling beams with bundled diagonal reinforcement", Eng. Struct., 93, 142-151. https://doi.org/10.1016/j.engstruct.2015.03.034
- Harries, K.A., Gong, B. and Shahrooz, B.M. (2000), "Behavior and design of reinforced concrete, steel, and steel-concrete coupling beams", Earthq. Spectra, 16(4), 775-799. https://doi.org/10.1193/1.1586139
- Jia, B. (2012), "Experimental study on steel fiber reinforced concrete coupling beams with different strengths", Master Dissertation, Zhengzhou University, Zhengzhou.
- Kanda, T., Lin, Z. and Li, V.C. (2000), "Tensile stress-strain modeling of pseudostrain hardening cementitious composites", J. Mater. Civil Eng., 12(2), 147-156. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(147)
- Khan, M.I. and Abbass, W. (2016), "Flexural behavior of highstrength concrete beams reinforced with a strain hardening cement-based composite layer", Constr. Build. Mater., 125, 927-935. https://doi.org/10.1016/j.conbuildmat.2016.08.132
- Lequesne, R.D., Parra-Montesinos, G.J. and Wight, J.K. (2013), "Seismic behavior and detailing of high-performance fiberreinforced concrete coupling beams and coupled wall systems", J. Struct. Eng., 139(8), 1362-1370. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000687
- Lequesne, R.D., Parra-Montesinos, G.J. and Wight, J.K. (2016). "Seismic response of fiber-reinforced coupled walls", ACI Struct. J., 113(3), 435-445.
- Li, V.C. and Kanda, T. (1998), "Engineered cementitious composites for structural applications", J. Mater. Civil Eng., 10(2), 66-69. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:2(66)
- Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492.
- Liang, X.W., Li, F.Y., Zhang, T. and Deng M.K. (2009), "Experimental study on seismic behavior of new reinforcement scheme deep coupling beams", Eng. Mech., 26(12), 119-126.
- Ma, X. (2011), "Experimental study on reinforced concrete coupling beams with different volume fraction of steel fibers", Master Dissertation, Zhengzhou University, Zhengzhou.
- Park, W. and Yun, H. (2011), "Seismic performance of pseudo strain-hardening cementitious composite coupling beams with different reinforcement details", Compos. Part B Eng., 42(6), 1427-1445. https://doi.org/10.1016/j.compositesb.2011.04.049
- Paulay, T. and Binney, J.R. (1974), "Diagonally reinforced coupling beams of shear walls", ACI Spec. Publ., 42(2), 579-598.
- Pi, T.X. (2008), "Experimental study on seismic behavior and design method study of small span-to-depth ratio coupling beams of seismic RC shear walls", Ph.D. Dissertation, Chongqing University, Chongqing.
- Shin, M., Gwon, S., Lee, K., Han, S.W. and Jo, Y.W. (2014), "Effectiveness of high performance fiber-reinforced cement composites in slender coupling beams", Constr. Build. Mater., 68, 476-490. https://doi.org/10.1016/j.conbuildmat.2014.06.089
- Sun, Z.G., Lin, Z.F. and Dai, R.T. (1994), "Behavior of coupling beams of shear wall reinforced with inclined rhomboidal bars", J. Build. Struct., 15(5), 14-23.
- Tassios, T.P., Moretti, M. and Bezas, A. (1996), "On the behavior and ductility of reinforced concrete coupling beams of shear walls", ACI Struct. J., 93(6), 711-720.
- Ye, Y.X., Qin, L.H., Liu, T. and Sun, X.Y. (2014), "Experimental study on seismic performance of small span-to-depth ratio coupling beams with PVA fiber reinforced concrete", Appl. Mech. Mater., 513, 134-137.
- Zhang, H.Z., Zhang, R.J. and Huang, C.K. (2008), "Experimental study of shear resistance of steel fiber reinforced high-strength concrete coupling beams", China Civil Eng. J., 40(11), 15-22.
Cited by
- Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877