참고문헌
- Anagnostopoulos, S. (1996), "Building pounding re-examined: how serious a problem is it", Eleventh World Conference on Earthquake Engineering, Pergamon, Elsevier Science Oxford, UK.
- Anagnostopoulos, S. and Karamaneas, C. (2008), "Use of collision shear walls to minimize seismic separation and to protect adjacent buildings from collapse due to earthquake-induced pounding", Earthq. Eng. Struct. Dyn., 37(12), 1371-1388. https://doi.org/10.1002/eqe.817
- Bertero, V.V. (1987), Observations on Structural Pounding. The Mexico Earthquakes-1985, Factors Involved and Lessons Learned, ASCE.
- Chau, K., Wei, X., Guo, X. and Shen, C. (2003), "Experimental and theoretical simulations of seismic poundings between two adjacent structures", Earthq. Eng. Struct. Dyn., 32(4), 537-554. https://doi.org/10.1002/eqe.231
- Cole, G.L., Dhakal, R.P. and Turner, F.M. (2012), "Building pounding damage observed in the 2011 Christchurch earthquake", Earthq. Eng. Struct. Dyn., 41(5), 893-913. https://doi.org/10.1002/eqe.1164
- Efraimiadou, S., Hatzigeorgiou, G.D. and Beskos, D.E. (2013), "Structural pounding between adjacent buildings subjected to strong ground motions. Part I: The effect of different structures arrangement", Earthq. Eng. Struct. Dyn., 42(10), 1509-1528. https://doi.org/10.1002/eqe.2285
- Filiatrault, A., Wagner, P. and Cherry, S. (1996), "An experimental study on the seismic pounding of buildings", Eleventh World Conference on Earthquake Engineering.
- Hameed, A., Saleem, M., Qazi, A., Saeed, S. and Bashir, M. (2012), "Mitigation of seismic pounding between adjacent buildings", Pakistan J. Sci., 64, 326-333.
- Iranian Seismic Code (2005), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800-05, 3rd Edition, Building and Housing Research Center, Iran.
- Jameel, M., Islam, A., Hussain, R.R., Hasan, S.D. and Khaleel, M. (2013), "Non-linear FEM analysis of seismic induced pounding between neighbouring multi-storey structures", Latin Am. J. Solid Struct., 10(5), 921-939. https://doi.org/10.1590/S1679-78252013000500004
- Jankowski, R. (2006), "Pounding force response spectrum under earthquake excitation", Eng. Struct., 28(8), 1149-1161. https://doi.org/10.1016/j.engstruct.2005.12.005
- Jankowski, R. (2009), "Non-linear FEM analysis of earthquakeinduced pounding between the main building and the stairway tower of the Olive View Hospital", Eng. Struct., 31(8), 1851-1864. https://doi.org/10.1016/j.engstruct.2009.03.024
- Kaushik, H.B., Dasgupta, K., Sahoo, D.R. and Kharel, G. (2006), "Sikkim Earthquake of 14 February 2006", NICEE Reconnaissance Report, National Information Center of Earthquake Engineering, Kanpur.
- Kioumarsi, B., Gholhaki, M., Kheyroddin, A. and Kioumarsi, M. (2016), "Analytical study of building height effects over steel plate shear wall behavior", Int. J. Eng. Technol. Innov., 6(4), 255-263.
- Kioumarsi, B., Kheyroddin, A., Gholhaki, M., Kioumarsi, M. and Hooshmandi, S. (2017), "Effect of span length on behavior of MRF accompanied with CBF and MBF systems", Procedia Eng., 171, 1332-1340. https://doi.org/10.1016/j.proeng.2017.01.431
- Maison, B. and Kasai, K. (1990), "SLAM-2: A computer program for the analysis of structural pounding", Extended Version, Available from the National Information Service for Earthquake Engineering, University of California, Berkeley, CA.
- Muthukumar, S. (2003), "A contact element approach with hysteresis damping for the analysis and design of pounding in bridges", Georgia Institute of Technology.
- Pant, D.R. and Wijeyewickrema, A.C. (2012), "Structural performance of a base-isolated reinforced concrete building subjected to seismic pounding", Earthq. Eng. Struct. Dyn., 41(12), 1709-1716. https://doi.org/10.1002/eqe.2158
- Phocas, M.C. and Sophocleous, T. (2012), "Numerical verification of a dual system's seismic response", Earthq. Struct., 3(5), 749-766. https://doi.org/10.12989/eas.2012.3.5.749
- Polycarpou, P.C. and Komodromos, P. (2010), "Earthquakeinduced poundings of a seismically isolated building with adjacent structures", Eng. Struct., 32(7), 1937-1951. https://doi.org/10.1016/j.engstruct.2010.03.011
- Polycarpou, P.C., Papaloizou, L. and Komodromos, P. (2014), "An efficient methodology for simulating earthquake-induced 3D pounding of buildings", Earthq. Eng. Struct. Dyn., 43(7), 985-1003. https://doi.org/10.1002/eqe.2383
- Polycarpou, P.C., Papaloizou, L., Komodromos, P. and Charmpis, D.C. (2015), "Effect of the seismic excitation angle on the dynamic response of adjacent buildings during pounding", Earthq. Struct., 8(5), 1127-1146. https://doi.org/10.12989/eas.2015.8.5.1127
- Ruangrassamee, A. and Kawashima, K. (2003), "Control of nonlinear bridge response with pounding effect by variable dampers", Eng. Struct., 25(5), 593-606. https://doi.org/10.1016/S0141-0296(02)00169-4
- Skrekas, P., Sextos, A. and Giaralis, A. (2014), "Influence of bidirectional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings", Earthq. Struct., 6(1), 71-87. https://doi.org/10.12989/eas.2014.6.1.071
피인용 문헌
- Dimensional pounding response analysis for adjacent inelastic MDOF structures based on modified Kelvin model vol.79, pp.3, 2018, https://doi.org/10.12989/sem.2021.79.3.347