DOI QR코드

DOI QR Code

EMI 개선을 위해 자동차용 전력변환기에 적용된 주파수 확산 기법 분석

An Investigation of EMI Reduction Technique using the Spread Spectrum for an Automotive Power Converter

  • Chae, Gyoo-Soo (Division of Information Communication Eng., Baekseok University)
  • 투고 : 2017.12.13
  • 심사 : 2018.02.20
  • 발행 : 2018.02.28

초록

본 연구에서는 전기 자동차용 DC/DC converter 회로의 전도성/복사성 방사 분석 결과를 제시하고 있다. 일반적으로 사용되는 MPQ4433 칩을 이용한 전력 변환회로의 EMI 특성을 개선하기 위해 주파수 확산 회로를 적용하였다. TLV3201칩을 사용한 주파수 확산 회로가 설계되어 전력변환 회로에 적용되었다. EMI 시뮬레이션을 통해 최적의 PCB 제작되었으며, 제작된 회로를 이용하여 원거리 방사, 근거리 전도 및 복사 방출에 대한 시뮬레이션과 측정 결과가 제시되었다. 전도 및 방사 방출은 CISPR 25의 표준화 된 시험 절차에 따라 측정되었으며 주파수 확산이 적용된 경우에 EMI 특성이 약 20% 개선되는 결과를 얻었다. 본 연구에서 제안 된 주파수 확산을 이용한 EMI 저감 기술은 자동차용 전력 컨버터 모듈의 설계에 처음 적용되었으며 향후 EMI 개선에 효과적으로 사용될 수 있을 것으로 예상된다.

In this study, the investigation results of conducted and radiated emission for DC/DC converter circuit applied in electric vehicles are presented. A frequency spreading circuit was used to improve the EMI characteristics of a power converter designed by using MPQ4433 chip. The frequency spreading circuit using a TLV3201 chip was designed and applied to the power converter. A PCB was fabricated based on the EMI minimization procedures and simulated and measured results were presented for the far-field and near-field conducted and radiated emissions using the fabricated circuit. The measurement were done as CISPR 25 standardized test procedures. It is clearly showed that the EMI characteristics were improved 20% in case frequency spreading was applied. The EMI reduction technique using the frequency spreading proposed in this study was first applied to the design of power converter module for automobile. It is expected that the method presented here can be effectively used for EMI improvement in the future.

키워드

참고문헌

  1. G. Braglia, A. Duffy and S. Barmada. (2016) Simulation Validation of Experimental Tests for Automotive System EMC Developmental Tests. Applied Computational Electromagnetics Society Journal, 31(9), 1028-1034.
  2. Benson Wei, Steven G. Pytel Jr. (2015 May). New Integrated Workflow for EMI Simulation. Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, DOI: 10.1109/APEMC.2015.7175276 APEMC 2015.
  3. L. Premalatha, T. A. Raghavendiran, C. Ravichandran. (2013). Experimental Study on Conducted EMI Mitigation in SMPS using a Novel Spread Spectrum Technique. Journal of Power Electronics, 13(4), 619-625. https://doi.org/10.6113/JPE.2013.13.4.619
  4. J. Jia, D. Rinas, and S. Frei. (2012 September) Prediction of radiated fields from cable bundles based on current distribution measurements. International Symposium on Electromagnetic Compatibility (EMC EUROPE 2012), (pp. 1-7).
  5. Hesener, Alfred. (2010) Electromagnetic Interference (EMI) in Power Supplies. Fairchild Semiconductor Power Seminar. 2011.
  6. S. Igarashi, S. Takizawa, K. Kuroki, T. Shimizu. (2000) Analysis and reduction of radiated EMI noise from converter systems. Electrical Engineering in Japan. 130(1), 106-117. https://doi.org/10.1002/(SICI)1520-6416(200001)130:1<106::AID-EEJ13>3.0.CO;2-3
  7. Gyoo-Soo Chae. (2016). An investigation Study of Electromagnetic Compatibility for Power Module. Journal of the Korea Convergence Society, 7(6), 23-28. https://doi.org/10.15207/JKCS.2016.7.6.023
  8. M. R. Barzegaran, A. Nejadpak, O. A. Mohammed. (2015). Physics-Based Modeling of Power Converter Drive System for Evaluation of Electromagnetic Compatibility. Applied Computational Electromagnetics Society Journal. 30(6), 660-669.
  9. A. Nejadpak and O. A. Mohammed. (2013) Physics based modeling of power converters from finite element electromagnetic field computations. IEEE Transactions on Magnetics, 49(1), 567-576. https://doi.org/10.1109/TMAG.2012.2206046
  10. Rodriguez, V. (2012). Automotive component EMC testing: CISPR 25, ISO 11452-2 and equivalent standards. IEEE Electromagnetic Compatibility Magazine, 1(1), 83-90. https://doi.org/10.1109/MEMC.2012.6244955
  11. D. Rinas, J. Jia, A. Zeichner, and S. Frei. (2013). Substituting EMC emission measurement by field and cable scan method using measured transfer function. Advances in Radio Science, 11, 183-188. https://doi.org/10.5194/ars-11-183-2013
  12. Tse, K. K., Chung, H. H., Huo, S. Y., & So, H. C. (2000). Analysis and spectral characteristics of a spread-spectrum technique for conducted EMI suppression. IEEE Transactions on Power Electronics, 15(2), 399-410.
  13. Hailey, J. C. (2003). U.S. Patent No. 6,647,052. Washington, DC: U.S. Patent and Trademark Office.
  14. Ming, X., Chen, Z., Zhou, Z. K., & Zhang, B. (2011). An advanced spread spectrum architecture using pseudorandom modulation to improve EMI in class D amplifier. IEEE transactions on power electronics, 26(2), 638-646. https://doi.org/10.1109/TPEL.2010.2063440
  15. Trescases, O., Wei, G., & Ng, W. T. (2006, June). A low-power DC-DC converter with digital spread spectrum for reduced EMI. In Power Electronics Specialists Conference, 2006. PESC'06. 37th IEEE (pp. 1-7). IEEE.