DOI QR코드

DOI QR Code

지반-구조물 경계면의 루핑 포텐셜 평가

Evaluation of Roofing Potential at the Ground-structure Interface

  • Park, Jeongman (Department of Construction Safety, Korea Infrastructure Safety Corporation) ;
  • Kim, Kanghyun (Department of Civil Engineering, Konkuk University) ;
  • Shin, Jongho (Department of Civil Engineering, Konkuk University)
  • 투고 : 2017.12.21
  • 심사 : 2018.02.23
  • 발행 : 2018.03.01

초록

파이핑은 가장 대표적인 제방의 붕괴 유형으로 불투수성 수리구조물과 지반 경계면에서 Backward Erosion Piping인 루핑(Roofing)이 흔하게 발생한다. 루핑에 대한 검토는 주로 경험적 방법인 크립비를 이용하지만 이는 지반-구조물 경계면의 특성을 고려하지 않는 문제가 있다. 본 연구에서는 지반-구조물 경계면 특성이 루핑에 미치는 영향을 평가하기 위해 모형시험과 수치해석을 이용하여 파이핑 위험도를 고찰하였다. 모형시험에서 경계면 조도가 커질수록 파이핑 포텐셜이 감소함을 확인하였으며, 이를 수치해석에 적용하였다. 기존의 일반적인 수치해석방법은 수위차만을 고려하므로 경계면에서의 입자거동을 적절히 모사할 수 없다. 논문에서는 침투해석을 통해 침투력을 구하고, 입자해석기법을 이용해 파이핑의 입자거동을 모사한 침투-입자거동 연계해석을 수행하여 지반-구조물 경계면 조건에 따른 루핑 포텐셜을 조사하였다. 해석결과 경계면의 조도가 감소할수록 루핑 발생 확률이 증가함을 확인하였다.

Piping is one of the most frequently occurring collapse type of a levee, and is often caused by roofing (backward erosion piping) at the ground-structure interface. Roofing is generally evaluated using creep ratio. However, creep ratio does not take into account the characteristics of the ground-structure interface. In this study, the roofing risk was investigated by using model test and numerical analysis considering the ground-structure interface characteristics. In the model test, it was confirmed that the piping potential decreased as the interface roughness increased, and this was applied to the numerical analysis. Existing numerical methods can not adequately simulate the particle behavior at the ground-structure interface because only the water level difference is considered. In this paper, particle behavior at the interface was investigated by performing seepage analysis and then, carrying out particle analysis technique simulating the boundary condition of the ground-structure interface. Analysis results have shown that the roofing resistance decreases as the ground-structure interface roughness decreases.

키워드

참고문헌

  1. 안용수, 김흥식, 박준영, 김영용 (2010), 모형시험을 통한 방수제 파이핑 안정성 평가사례(새만금 동진 3공구), 한국지반공학회지, 제26권, 11호, pp. 18-25.
  2. Assimaki, D., Kausel, E. and Whittle, A. (2000), Model for dynamic shear modulus and damping for granular soils, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 10, pp. 859-869. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(859)
  3. Bligh, W. G. (1910), The practical design of irrigation works second edition, London and Tonbridge, pp. 162-205.
  4. Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M. and Soliman, H. H. (2002), Roughness parameters, Journal of Materials Processing Technology, Vol. 123, No. 1, pp. 133-145. https://doi.org/10.1016/S0924-0136(02)00060-2
  5. Jeong, J. W., Lee, S. J., Park, N. W. and Chun, B. S. (2013), A numerical study on the prevention of clogging in granular compaction pile, Journal of the Korean Geo-Environmental Society, Vol. 14, No. 1, pp. 43-41 (in Korean).
  6. Jin, S. W., Kim, N. R. and Kim, D. S. (2011), Reproduction of piping failure due to the permeable layer using centrifuge test, Journal of The Korea Society of Civil Engineers, Vol. 31, No. 1C, pp. 1-10 (in Korean).
  7. Justin, J. D. (1923), The design of earth dams, Proceedings of the ASCE, Vol. 49, No. 5, pp. 856-916.
  8. Kim, J. M., Choi, B. H., Oh, S. Y. and Kim, K. M. (2006), Numerical studies for the safety estimation of box-culvert in levee, Korea Water Resources Association, Vol. 39, No. 6, pp. 479-486 (in Korean). https://doi.org/10.3741/JKWRA.2006.39.6.479
  9. Kim, H. J., Park, J. M. and Shin, J. H. (2018), Flow behavior and piping potential ar the soil-structure interface, Geotechnique, pp. 1-24.
  10. Kovacs, G. (1981), Seepage hydraulics, Elservier Scientific Pubilshing Company, pp. 349-362.
  11. Lane, E. W. (1935), Security from under seepage masonry dams on earth foundations, Transaction ASCE, Vol. 100, pp. 1235-1272.
  12. Lee, D. Y. and Cho, N. K. (2016), Understanding of subsurface cavity mechanism due to the deterioration of buried pipe, Journal of the Korea Geotechnical Society, Vol. 32, No. 12, pp. 33-43 (in Koean). https://doi.org/10.7843/kgs.2016.32.12.33
  13. Potyondy, F. G. (1961), Skin friction between various soils and construction materials, Geotechnique, Vol. 11, No. 4, pp. 339-353. https://doi.org/10.1680/geot.1961.11.4.339
  14. Sellmeijer, J. B. (2006), Numerical computation of seepage erosion below dams (piping), Proceedings of the 3rd international conference on scour and erosion, Gouda, the Netherlands: CURNET, pp. 596-601.
  15. Shamy, E. L. U. and Aydin, F. (2008), Multiscale modeling of flood-induce piping in river levees, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 9, pp. 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1385)
  16. Wang, Y. and Ni, X. (2013), Hydro-mechanical analysis of piping erosion based on similarity criterion at micro-level by PFC3D, European Journal of Environmental and Civil Engineering, Vol. 17, No. S1, pp. s184-s204.