DOI QR코드

DOI QR Code

Development of Time Domain Reflectometry Probe for Evaluation of Copper Concentration in Saline Environment

염수환경에서의 구리 농도 평가를 위한 Time Domain Reflectometry 프로브 개발

  • Lee, Dongsoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yu, Jung-Doung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2017.12.19
  • Accepted : 2018.02.07
  • Published : 2018.03.01

Abstract

As electromagnetic waves are affected by electrical conductivity or permittivity, they are widely used to evaluate geotechnical characteristics. In this study, a probe for measuring electromagnetic waves using a time domain reflectometry is manufactured to evaluate heavy metal concentration in saline water. In the experiments, a copper is used as a heavy metal, and a probe is demonstrated with the concentration of copper. Solutions were set for 8 different copper concentration (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 mg/L) in saline water with 3% salinity. The probe is coated by electrical insulating materials such as epoxy, top-coat, varnish, acrylic paint, heat-shrinkage tube to measure electromagnetic waves in saline water. The measured signals are compared according to coating material. As results, for probes coated with acrylic paint and heat-shrinkage tube, signal variation is not detected. For epoxy, top-coat, and varnish coated probes, the voltage decreases with an increase of copper concentration. Probes coated by epoxy at once and top coat can estimate under 5 mg/L of copper concentration and the probe coated by epoxy twice can estimate over 5 mg/L of copper concentration. This study shows that the probe using the time domain reflectometry can be used to evaluate the concentration of heavy metal in saline water by coating the probe with insulating material.

전자기파는 주변 매질의 전기전도도와 유전율에 민감한 영향을 받기 때문에 지반의 특성을 평가하는데 널리 이용되고 있다. 본 연구에서는 염수환경에서도 다양한 농도의 중금속을 검측하기 위하여 시간영역반사법을 이용한 전자기파 측정 프로브를 제작하였다. 중금속으로는 구리를 사용하였으며, 실내 실험을 통해 구리 농도에 따라 적용 가능한 프로브를 선정하였다. 실내 실험에서는 염도 3%의 염수에 용해된 구리의 농도가 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 그리고 10mg/L가 되도록 8단계로 용액을 조성하였다. 프로브는 염수에서도 전자기파를 측정할 수 있도록 5가지의 각기 다른 절연재로 코팅하여 비교하였다. 코팅재로는 에폭시, 탑코트, 바니쉬, 아크릴페인트, 히팅튜브를 사용하였으며 코팅재에 따른 전자기파의 신호 특성을 분석하였다. 실험 결과, 아크릴페인트와 히팅튜브로 코팅된 프로브는 구리 농도에 따른 신호 변화가 관측되지 않았으며, 에폭시, 탑코트, 바니쉬의 경우 구리 농도가 증가함에 따라 반사된 전자기파의 전압의 크기가 감소하는 것으로 나타났다. 에폭시로 1회 코팅한 프로브와 탑코트로 코팅한 프로브는 구리의 농도가 5mg/L 이하일 때 민감한 반응을 보였으나 에폭시로 2회 코팅한 경우, 구리의 농도가 5mg/L보다 클 때 더 민감하게 반응하였다. 본 연구의 결과는 절연재로 코팅된 시간영역반사법을 이용한 전자기파 측정 프로브가 염수에 녹아있는 중금속의 농도를 평가하는데 활용될 수 있음을 보여준다.

Keywords

References

  1. Bogatin, E. (2009), Signal and power integrity-simplified 2nd edition, Prentice Hall Signal Integrity Library, Prentice Hall, Englewood Cliffs, p.792.
  2. Byun, Y. H., Hong, W. T., Park, K., Hong, S. S., Lee, J. S. and Lee, S. H. (2017), Evaluation of water content in active layer using penetration-type time domain reflectometry, CATENA (in press) (In Korean).
  3. Chen, R., Drnevich, V., Yu, X., Nowack, R. L. and Chen, Y. (2007), Time domain reflectometry surface reflections for dielectric constant in highly conductive soils, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1597-1608. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1597)
  4. Dalton, F. N. and Van Genuchten, M. T. (1986), Time domain reflectometry for measuring soil water content and salinity, Geoderma, Vol. 38, pp. 237-250. https://doi.org/10.1016/0016-7061(86)90018-2
  5. Fellner-Feldegg, H. (1969), The measurement of dielectrics in the time domain, The Journal of Physical Chemistry, Vol. 3, No. 3, pp. 616-623.
  6. Fujiyasu, Y., Pierce, C. E., Fan, L. and Wong, C. P. (2004), High dielectric insulation coating for time domain reflectometry soil moisture sensor, Water resources research, Vol. 40, No. 4, pp. 1-7.
  7. Hong, W. T., Jung, Y. S., Kang, S. and Lee, J. S. (2016), Estimation of soil-water characteristic curves in multiple-cycles using membrane and TDR system, Materials, Vol. 9, No. 1019, pp. 1-15 (In Korean).
  8. Kaya, A. and Fang, H. Y. (1997), Identification of contaminated soils by dielectric constant and electrical conductivity, Journal of Environmental Engineering, Vol. 123, pp. 169-177. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(169)
  9. Kirby, B. J. (2010), Micro- and nanoscale fluid mechanics, transport in microfluidic device, Cornell University, New York, p. 536.
  10. Knight, J. H. (1992), Sensitivity of time domain reflectometry measurements to lateral variations in soil water content, Water Resources Research, Vol. 28, No. 9, pp. 2345-2352. https://doi.org/10.1029/92WR00747
  11. Lee, J. H., Oh, M. H., Park, J., Lee, S. H. and Ahn, K. H. (2003), Dielectric dispersion characteristics of sand contaminated by heavy metal, Landfill Leachate and BTEX (02-104B), Journal of hazardous materials, Vol. 105, No. 1, pp. 83-102 (In Korean). https://doi.org/10.1016/j.jhazmat.2003.07.004
  12. Lee, D., Hong, Y. H., Hong, W. T., Chae, K. S. and Lee, J. S. (2017), Effects of heavy metal and salinity on electrical conductivity in fully saturated sand, Journal of the Korean Geo-Environmental Society, Vol. 18, No. 10, pp. 23-34 (In Korean).
  13. Li, Y., Zhao, K., Ren, J., Ding, Y. and Wu, L. (2014), Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: A case study of soda alkaline saline soils in Western Jilin Province using radarsat-2 data, The Scientific World Journal, Vol. 2014, pp. 1-14.
  14. Mojid, M. A., Wyseure, G. C. L. and Rose, D. A. (2003), Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering, Geotechnical and Geological Engineering, Vol. 21, pp. 243-258. https://doi.org/10.1023/A:1024910309208
  15. Noborio, K. (2001), Measurement of soil water content and electrical conductivity by time domain reflectometry: a review, Computers and Electronics in Agriculture, Vol. 31, No. 3, pp. 213-237. https://doi.org/10.1016/S0168-1699(00)00184-8
  16. O'Connor, K. M. and Dowding, C. H. (1999), Geomeasurements by pulsing tdr cables and probes, geochemistry, CRC Press, NewYork, p. 424.
  17. Oh, M., Lee, J. H., Park, J. B., Kim, H. S. and Kang, W. S. (2001), Development of contaminant leakage detection system using electrical resistance measurement: II. Evaluation of applicability for landfill site by field model tests, Journal of the Korean Geotechnical Society, Vol. 17, No. 6, pp. 225-233 (In Korean).
  18. Park, H., Oh, M. and Kwon, O. (2016), Analysis on contaminant transport according to the embedded depth of vertical barrier of offshore landfill, Journal of the Korean Geo-Environmental Society, Vol. 17, No. 8, pp. 29-37 (In Korean).
  19. Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D. and Friedman, S. P. (2003), A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, Vadose Zone Journal, Vol. 2, No. 4, pp. 444-475. https://doi.org/10.2136/vzj2003.4440
  20. Santamarina, J. C., Klein, K. A. and Fam, M. A. (2001), Soils and waves particulate materials behavior, characterization and process monitoring, John Wiley and Sons. New York, p. 508.
  21. Spaans, E.J. A. and Baker, J. M. (1993), Simple baluns in parallel probes for time domain reflectometry, Soil Science Society of America, Vol. 57, pp. 668-673. https://doi.org/10.2136/sssaj1993.03615995005700030006x
  22. Spergel, J. (1972), Coaxial cable and connector systems, Handbook of wiring, cabling, and interconnecting for electronics, C. A. Harper, Ed., McGraw-Hill, New York, Chapter 4, p. 1152.
  23. Topp, G. C., Davis, J. L. and Annan, A. P. (1980), Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resources Research, Vol. 16, No. 3, pp. 547-582. https://doi.org/10.1029/WR016i003p00547
  24. Von Hippel, A. R. (1954), Dielectric materials and applications, MIT Press, Cambridge, Mass, p. 456.
  25. Yu, J. D., Kim, K. H. and Lee, J. S. (2018), Non-destructive health monitoring of soil nails using electromagnetic waves, Canadian Geotechnical Journal, Vol. 55, No. 1, pp. 79-89 (In Korean). https://doi.org/10.1139/cgj-2017-0043
  26. Zegelin, S. J., White, I. and Jenkins, D. R. (1989), Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry, Water Resources Research, Vol. 25, No. 11, pp. 2367-2376. https://doi.org/10.1029/WR025i011p02367