References
- ABAQUS, C. (2012), Analysis User's Manual, Version 6.12-3.
- Al-Thairy, H. (2016), "A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load", J. Imp. Eng., 94, 120-133. https://doi.org/10.1016/j.ijimpeng.2016.04.007
- Alisjahbana, S.W. and Wangsadinata, W. (2011), "Response of damped orthotropic stiffened plates subjected to a stepped triangular blast loading", Proc. Eng., 14, 989-996. https://doi.org/10.1016/j.proeng.2011.07.124
- ASCE (2011), Design of Blast Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineers, Petrochemical Committee, Task Committee on Blast Resistant Design, New York, U.S.A.
- Azevedo, R.L. and Alves, M. (2008), "A numerical investigation on the visco-plastic response of structures to different pulse loading shapes", Eng. Struct., 30(1), 258-267. https://doi.org/10.1016/j.engstruct.2007.04.002
- Baker, W.E., Cox, P.A., Kulesz, J.J., Strehlow, R.A. and Westine, P. S. (2012), Explosion Hazards and Evaluation (Vol. 5), Elsevier Scientific Publishing Company, New York, U.S.A.
- Biggs, J.M. (1964), Introduction to Structural Dynamics, McGraw-Hill College.
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill, New York, U.S.A.
- Dharaneepathy, M.V. and Sudhesh, K.G. (1990), "Optimal stiffening of square plates subjected to air-blast loading", Comput. Struct., 36(5), 891-899. https://doi.org/10.1016/0045-7949(90)90160-4
- DiPaolo, B.P. and Woodson, S.C. (2006), "An overview of research at ERDC on steel stud exterior wall systems subjected to severe blast loading", Proceedings of the Structures Congress 2006: Structural Engineering and Public Safety.
- Elsanadedy, H.M., Almusallam, T.H., Alharbi, Y.R., Al-Salloum, Y.A. and Abbas, H. (2014), "Progressive collapse potential of a typical steel building due to blast attacks", J. Constr. Steel Res., 101, 143-157. https://doi.org/10.1016/j.jcsr.2014.05.005
- Geretto, C., Yuen, S.C.K. and Nurick, G.N. (2015), "An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading", J. Imp. Eng., 79, 32-44. https://doi.org/10.1016/j.ijimpeng.2014.08.002
- Hrynyk, T.D. and Myers, J.J. (2008), "Out-of-plane behavior of URM arching walls with modern blast retrofits: Experimental results and analytical model", J. Struct. Eng., 134(10), 1589-1597. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1589)
- Iqbal, M.A., Senthil, K., Bhargava, P. and Gupta, N.K. (2015), "The characterization and ballistic evaluation of mild steel", J. Imp. Eng., 78, 98-113. https://doi.org/10.1016/j.ijimpeng.2014.12.006
- Jacob, N., Nurick, G.N. and Langdon, G.S. (2007), "The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads", Eng. Struct., 29(10), 2723-2736. https://doi.org/10.1016/j.engstruct.2007.01.021
- Jacob, N., Yuen, S.C.K., Nurick, G.N., Bonorchis, D., Desai, S.A. and Tait, D. (2004), "Scaling aspects of quadrangular plates subjected to localised blast loads-experiments and predictions", J. Imp. Eng., 30(8), 1179-1208. https://doi.org/10.1016/j.ijimpeng.2004.03.012
- Johnson, G.R. and Cook, W.H. (1983), "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures", Proceedings of the 7th International Symposium on Ballistics.
- Jones, N. (2011), Structural Impact, Cambridge University Press.
- Kadid, A. (2008), "Stiffened plates subjected to uniform blast loading", J. Civil Eng. Manage., 14(3), 155-161. https://doi.org/10.3846/1392-3730.2008.14.11
- Markose, A. and Rao, C.L. (2017), "Mechanical response of V shaped plates under blast loading", Thin-Wall. Struct., 115, 12-20. https://doi.org/10.1016/j.tws.2017.02.002
- Mazek, S.A. (2014), "Performance of sandwich structure strengthened by pyramid cover under blast effect", Struct. Eng. Mech., 50(4), 471-486. https://doi.org/10.12989/sem.2014.50.4.471
- Mazek, S.A. and Wahab, M. (2015), "Impact of composite materials on buried structures performance against blast wave", Struct. Eng. Mech., 53(3), 589-605. https://doi.org/10.12989/sem.2015.53.3.589
- Mendis, P. and Ngo, T. (2003), "Vulnerability assessment of concrete tall buildings subjected to extreme loading conditions", Proceedings of the CIB-CTBUH International Conference on Tall Buildings.
- Moghimi, H. and Driver, R.G. (2010), "Computational analysis of steel plate shear walls under accidental blast loading", Proceedings of the 2nd Specialty Conference on Disaster Mitigation, Winnipeg, Manitoba, Canada.
- Moghimi, H. and Driver, R.G. (2014), "Performance assessment of steel plate shear walls under accidental blast loads", J. Constr. Steel Res., 106, 44-56.
- Nguyen, T.P. and Tran, M.T. (2011), "Response of vertical wall structures under blast loading by dynamic analysis", Proc. Eng., 14, 3308-3316. https://doi.org/10.1016/j.proeng.2011.07.418
- Olmati, P., Petrini, F. and Bontempi, F. (2013), "Numerical analyses for the structural assessment of steel buildings under explosions", Struct. Eng. Mech., 45(6), 803-819. https://doi.org/10.12989/sem.2013.45.6.803
- Pandey, A.K. (2010), "Damage prediction of RC containment shell under impact and blast loading", Struct. Eng. Mech., 36(6), 729-744. https://doi.org/10.12989/sem.2010.36.6.729
- Sabuwala, T., Linzell, D. and Krauthammer, T. (2005), "Finite element analysis of steel beam to column connections subjected to blast loads", J. Imp. Eng., 31(7), 861-876. https://doi.org/10.1016/j.ijimpeng.2004.04.013
- Salim, H., Dinan, R. and Townsend, P.T. (2005), "Analysis and experimental evaluation of in-fill steel-stud wall systems under blast loading", J. Struct. Eng., 131(8), 1216-1225. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1216)
- Smilowitz, R. (2002), "Analytical tools for progressive collapse analysis", Proceedings of the National Workshop on Prevention of Progressive Collapse.
- Smith, N.L., Tait, M.J., El-Dakhakhni, W.W. and Mekky, W.F. (2016), "Response analysis of reinforced concrete block infill panels under blast", J. Perform. Constr. Facilit., 30(6), 04016059. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000825
- Smith, P.D. and Hetherington, J.G. (1994), Blast and Ballistic Loading of Structures, Butterworth and Heinemann, Oxford.
- Snyman, I.M. (2010), "Impulsive loading events and similarity scaling", Eng. Struct., 32(3), 886-89. https://doi.org/10.1016/j.engstruct.2009.12.014
- Tavakoli, H.R. and Kiakojouri, F.O.A.D. (2014), "Numerical dynamic analysis of stiffened plates under blast loading", Lat. Am. J. Sol. Struct., 11(2), 185-199. https://doi.org/10.1590/S1679-78252014000200003
- Turkmen, H.S. and Mecitoglu, Z. (1999), "Dynamic response of a stiffened laminated composite plate subjected to blast load", J. Sound Vibr., 221(3), 371-389. https://doi.org/10.1006/jsvi.1998.1976
- UFC 3-340-02 (2008), Structures to Resist the Effects of Accidental Explosions, Unified Facilities Criteria, US Department of Defense, Washington, U.S.A.
- Wierzbicki, T. and Florence, A.L. (1970), "A theoretical and experimental investigation of impulsively loaded clamped circular viscoplastic plates", J. Sol. Struct., 6(5), 553-568. https://doi.org/10.1016/0020-7683(70)90030-2
- Yuen, S.C.K., Langdon, G.S., Nurick, G.N., Pickering, E.G. and Balden, V.H. (2012), "Response of V-shape plates to localised blast load: Experiments and numerical simulation", J. Imp. Eng., 46, 97-109. https://doi.org/10.1016/j.ijimpeng.2012.02.007
- Zhang, P., Cheng, Y., Liu, J., Li, Y., Zhang, C., Hou, H. and Wang, C. (2016), "Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading", Compos. Part B: Eng., 105, 67-81. https://doi.org/10.1016/j.compositesb.2016.08.038
- Zheng, C., Kong, X.S., Wu, W.G. and Liu, F. (2016), "The elasticplastic dynamic response of stiffened plates under confined blast load", J. Imp. Eng., 95, 141-153. https://doi.org/10.1016/j.ijimpeng.2016.05.008
- Zoghi, M.A. and Mirtaheria, M. (2016), "Progressive collapse analysis of steel building considering effects of infill panels", Struct. Eng. Mech., 59(1), 59-82. https://doi.org/10.12989/sem.2016.59.1.059
Cited by
- Computational predictions for predicting the performance of steel 1 panel shear wall under explosive loads vol.38, pp.9, 2018, https://doi.org/10.1108/ec-09-2020-0492