과제정보
연구 과제 주관 기관 : Natural Science Foundation of China
참고문헌
- ACI 350.3 (2006), Seismic Design of liquid containing concrete Structures, American Concrete Institute, Farmington Hills, U.S.A.
- Ahari, M.N., Eshghi, S. and Ashtiany, M.G. (2009), "The tapered beam model for bottom plate uplift analysis of unanchored cylindrical steel storage tanks", Eng. Struct., 31(3), 623-632. https://doi.org/10.1016/j.engstruct.2008.10.011
- Akyildiz, H. (2012), "A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank", J. Sound Vibr., 331(1), 41-52. https://doi.org/10.1016/j.jsv.2011.08.002
- Akyildiz, H. and U nal, E. (2005), "Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing", Ocean Eng., 32(11-12), 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
- Alembagheri, M. (2014), "A new dynamic procedure for evaluation of steel storage tanks under multidirectional seismic excitations", KSCE J. Civil Eng., 18(6), 1696-1703. https://doi.org/10.1007/s12205-014-0100-7
- Alembagheri, M. and Estekanchi, H.E. (2011), "Seismic assessment of unanchored steel storage tanks by endurance time method", Earthq. Eng. Eng. Vibr., 10(4), 591-604. https://doi.org/10.1007/s11803-011-0092-y
- Amiri, M. and Sabbagh-Yazdi, S.R. (2011), "Ambient vibration test and finite element modeling of tall liquid storage tanks", Thin Wall Strcut., 49(8), 974-983. https://doi.org/10.1016/j.tws.2011.03.008
- API 650 (2005), Welded Steel Tanks for Oil Storage, American Petroleum Institute, Washington, U.S.A.
- API Standard 650 (1980), Steel Tanks for Oil Storage, 7th Edition, Appendix E, American Petroleum Institute, Washington, U.S.A.
- Barton, D.C. and Parker, J.V. (1987), "Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks", Earthq. Eng. Struct. Dyn., 15(3), 299-322. https://doi.org/10.1002/eqe.4290150303
- Bayraktar, A., Sevim, B., Altunisik, A.C. and Turker, T. (2010), "Effect of the model updating on the earthquake behavior of steel storage tanks", J. Constr. Steel Res., 66(3), 462-469. https://doi.org/10.1016/j.jcsr.2009.10.006
- Bochkarev, S.A., Lekomtsev, S.V. and Matveenko, V.P. (2016), "Dynamic analysis of partially filled non-circular cylindrical shells with liquid sloshing", J. Appl. Mech., 8(3), 1650027. https://doi.org/10.1142/S1758825116500277
- Brunesi, E., Nascimbene, R., Pagani, M. and Beilic, D. (2015), "Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes", J. Perform Constr. Fac., 29(5).
- Celebi, M.S. and Akyildiz, H. (2002), "Nonlinear modeling of liquid sloshing in a moving rectangular tank", Ocean Eng., 29, 1527-1553. https://doi.org/10.1016/S0029-8018(01)00085-3
- Chaduvula, U., Patel, D. and Gopalakrishnan, N. (2013), "Fluidstructure-soil interaction effects on seismic behaviour of elevated water tanks", Proc. Eng., 51, 84-91. https://doi.org/10.1016/j.proeng.2013.01.014
- Chalhoub, M.S. and Kelly, J.M. (1990), "Shake table test of cylindrical water tanks in base-isolated structures", J. Eng. Mech., 116(7), 1451-1472. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:7(1451)
- Chen, J.Z. and Kianoush, M.R. (2009), "Generalized SDOF system for seismic analysis of concrete rectangular liquid storage tanks", Eng. Strcut., 31(10), 2426-2435. https://doi.org/10.1016/j.engstruct.2009.05.019
- Chen, J.Z. and Kianoush, M.R. (2015), "Design procedure for dynamic response of concrete rectangular liquid storage tanks using generalized SDOF system", Can. J. Civil Eng., 42(11), 960-965. https://doi.org/10.1139/cjce-2014-0560
- Cheng, X., Cao, L. and Zhu, H. (2015), "Liquid-solid interaction seismic response of an isolated overground rectangular reinforced-concrete liquid-storage structure", J. Asian Architect. Build. Eng., 14(1), 175-180. https://doi.org/10.3130/jaabe.14.175
- Cho, K.H., Kim, M.K., Lim, Y.M. and Cho, S.Y. (2004), "Seismic response of base-isolated liquid storage tanks considering fluidstructure-soil interaction in time domain", Soil Dyn. Earthq. Eng., 24(11), 839-852. https://doi.org/10.1016/j.soildyn.2004.05.003
- Colombo, J.I. and Almazan, J.L. (2015), "Seismic reliability of continuously supported steel wine storage tanks retrofitted with energy dissipation devices", Eng. Struct., 98, 201-211. https://doi.org/10.1016/j.engstruct.2015.04.037
- Curadelli, O. (2013), "Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks", J. Constr. Steel Res., 83(2), 166-176. https://doi.org/10.1016/j.jcsr.2012.12.022
- Curadelli, O., Ambrosini, D., Mirasso, A. and Amani, M. (2010), "Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement", J. Flu. Strcut., 26(1), 148-159. https://doi.org/10.1016/j.jfluidstructs.2009.10.002
- Dieterman, H.A. (1986), "An analytically derived lumpedimpedance model for the dynamic behaviour of a water tower", Ingen.-Archiv., 56(4), 265-280. https://doi.org/10.1007/BF00542478
- Drosos, G.C., Dimas, A.A. and Karabalis, D.L. (2008), "Discrete models for seismic analysis of liquid storage tanks of arbitrary shape and fill height", J. Press. Vess. Technol., 4(130), 2286-2298.
- Edwards N.W. (1969), "A procedure for dynamic analysis of thin walled cylindrical liquid storage tanks subjected to lateral ground motions", Ph.D. Dissertation, University of Michigan, Michigan, U.S.A.
- Elahi, R., Passandideh-Fard, M. and Javanshir, A. (2015), "Simulation of liquid sloshing in 2D containers using the volume of fluid method", Ocean Eng., 96, 226-244. https://doi.org/10.1016/j.oceaneng.2014.12.022
- Elkholy, S.A., Elsayed, A.A., El-Ariss, B. and Sadek, S.A. (2014), "Optimal finite element modelling for modal analysis of liquid storage circular tanks", J. Struct. Eng., 5(3), 207-241.
- Eurocode 8 (1998), Earthquake Resistant Design of Structures, Part 4: Tanks Silos, and Pipelines, European Committee for Standardization, Brussels, Belgium.
- Eurocode 8 (2006), Design of Structures for Earthquake Resistance, Part 4: Silos, Tanks and Pipelines, BS EN 1998-4, European Committee for Standardization, Brussels, Belgium.
- Fang, Z., Chen, Z., Yan, S., Cao, G. and Wang, J. (2013), "Dynamic experimental investigation on the uplift response of liquid storage tanks under seismic excitations with different characteristics", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(7), 1525-1534. https://doi.org/10.1177/0954406212461590
- Firouz-Abadi, R.D., Haddadpour, H. and Ghasemi, M. (2009), "Reduced order modeling of liquid sloshing in 3D tanks using boundary element method", Eng. Anal. Bound Elem, 33(6), 750-761. https://doi.org/10.1016/j.enganabound.2009.01.005
- Gazetas, G. (1983), "Analysis of machine foundation vibrations: State of the art", J. Soil Dyn. Earthq. Eng., 2(1), 2-42.
- Gazetas, G. (1991), Foundation Vibrations, Foundation Engineering Handbook, 2nd Edition, Chapter 15, 553-593, H.-Y. Fang ed, Van Nostrand Reinhold, New York, U.S.A.
- Ghaemmaghami, A.R. and Kianoush, M.R. (2010), "Effect of wall flexibility on dynamic response of concrete rectangular liquid storage tanks under horizontal and vertical ground motions", J. Struct. Eng., 136(4), 441-451. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000123
- Goudarzi, M.A. and Danesh, P.N. (2016), "Numerical investigation of a vertically baffled rectangular tank under seismic excitation", J. Flu. Strcut., 61, 450-460. https://doi.org/10.1016/j.jfluidstructs.2016.01.001
- Haroun, M.A. (1983), "Vibration studies and tests of liquid storage tanks", Earthq. Eng. Strcut. D, 11, 179-206. https://doi.org/10.1002/eqe.4290110204
- Hashemi, S., Saadatpour, M.M. and Kianoush, M.R. (2013), "Dynamic analysis of flexible rectangular fluid containers subjected to horizontal ground motion", Earthq. Eng. Strcut. D, 42(11), 1637-1656. https://doi.org/10.1002/eqe.2291
- Housner, G.W. (1957), "Dynamic pressures on accelerated fluid containers", B Seismol. Soc. Am., 47(1), 15-35.
- Housner, G.W. (1963), "The dynamic behavior of water tanks", B Seismol. Soc. Am., 53(1), 381-387.
- Jing, W., Cheng, X., Shi, W., Fan, J. and Feng, H. (2016), "Study of baffle boundary and system parameters on liquid-solid coupling vibration of rectangular liquid-storage structure", Shock Vibr., 2016, 1-10.
- Kianoush, M.R. and Chen, J.Z. (2006), "Effect of vertical acceleration on response of concrete rectangular liquid storage tanks", Eng. Struct., 28(5), 704-715. https://doi.org/10.1016/j.engstruct.2005.09.022
- Kianoush, M.R. and Ghaemmaghami, A.R. (2011), "The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction", Eng. Strcut., 33(7), 2186-2200. https://doi.org/10.1016/j.engstruct.2011.03.009
- Larkin, T. (2002), "The influence of foundation conditions on the earthquake response of two tanks", Proceedings of the New Zealand Society for Earthquake Engineering Technical Conferene.
- Larkin, T. (2008), "Seismic response of liquid storage tanks incorporating soil structure interaction", J. Geotech. Geoenviron., 134(1), 1804-1814. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1804)
- Lee, C.J.K., Noguchi, H. and Koshizuka, S. (2007), "Fluid-shell structure interaction analysis by coupled particle and finite element method", Comput. Struct., 85(11-14), 688-697. https://doi.org/10.1016/j.compstruc.2007.01.019
- Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W. and Lee, Y.B. (2007), "A parametric sensitivity study on LNG tank sloshing loads by numerical simulations", Ocean Eng., 34(1), 3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
- Lee, D.Y. (1997), "A study on the sloshing of cargo tanks including hydroelastic effects", Ph.D. Dissertation, Seoul National University, Seoul, South Korea.
- Li, J., You, X., Cui, H., He, Q. and Ju, J. (2015), "Analysis of large concrete storage tank under seismic response", J. Mech. Sci. Technol., 29(1), 85-91. https://doi.org/10.1007/s12206-014-1213-0
- Lin, G., Liu, J., Li, J. and Hu, Z. (2015), "A scaled boundary finite element approach for sloshing analysis of liquid storage tanks", Eng. Anal. Bound Elem, 56, 70-80. https://doi.org/10.1016/j.enganabound.2015.02.006
- Liu, X., Lin, P. and Shao, S. (2014), "An ISPH simulation of coupled structure interaction with free surface flows", J. Flu. Struct., 48, 46-61. https://doi.org/10.1016/j.jfluidstructs.2014.02.002
- Livaoglu, R. (2008), "Investigation of seismic behavior of fluidrectangular tank-soil/foundation systems in frequency domain", Soil Dyn. Earthq. Eng., 28(2), 132-146. https://doi.org/10.1016/j.soildyn.2007.05.005
- Lu, L., Jiang, S., Zhao, M. and Tang, G. (2015), "Twodimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions", Ocean Eng., 108, 662-677. https://doi.org/10.1016/j.oceaneng.2015.08.060
- Maekawa, A., Shimizu, Y., Suzuki, M. and Fujita, K. (2010), "Vibration test of a 1/10 reduced scale model of cylindrical water storage tank", J. Press. Vess. Technol., 132(5), 51801. https://doi.org/10.1115/1.4001915
- Malhotra, P.K. (1997), "Seismic response of soil-supported unanchored liquid-storage tanks", J. Struct. Eng., 4(123), 440-450.
- Malhotra, P.K. and Veletsos, A.S. (1994a), "Beam model for baseuplifting analysis of cylindrical tanks", J. Struct. Eng., 120(12), 3471-3488. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:12(3471)
- Malhotra, P.K. and Veletsos, A.S. (1994b), "Uplifting analysis of base plates in cylindrical tanks", J. Struct. Eng., 12(120), 3489-3505.
- Malhotra, P.K. and Veletsos, A.S. (1994c), "Uplifting response of unanchored liquid-storage tanks", J. Struct. Eng., 12(120), 3525-3547.
- Manos, G.C. and Clough, R.W. (1985), "Tank damage during the May 1983 Coalinga earthquake", J. Earthq. Eng. Struct. Dyn., 13(4), 449-466. https://doi.org/10.1002/eqe.4290130403
- Mirzabozorg, H., Hariri-Ardebili, M.A. and A, R.N. (2012), "Seismic behavior of three dimensional concrete rectangular containers including sloshing effects", Coupled Syst. Mech., 1(1), 79-98. https://doi.org/10.12989/csm.2012.1.1.079
- Mocilan, M., Zmindak, M. and Pastorek, P. (2016), "Dynamic analysis of fuel tank", Proc. Eng., 136, 45-49. https://doi.org/10.1016/j.proeng.2016.01.172
- Moslemi, M. and Kianoush, M.R. (2012), "Parametric study on dynamic behavior of cylindrical ground-supported tanks", Eng. Struct., 42, 214-230. https://doi.org/10.1016/j.engstruct.2012.04.026
- Nachtigall, I., Gebbeken, N. and Urrutia-Galicia, J.L. (2003), "On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base", Eng. Struct., 25(2), 201-213. https://doi.org/10.1016/S0141-0296(02)00135-9
- Nayak, S.K. and Biswal, K.C. (2015), "Fluid damping in rectangular tank fitted with various internal objects-an experimental investigation", Ocean Eng., 108, 552-562. https://doi.org/10.1016/j.oceaneng.2015.08.042
- Nicolici, S. and Bilegan, R.M. (2013), "Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks", Nucl. Eng. Des., 258, 51-56. https://doi.org/10.1016/j.nucengdes.2012.12.024
- Niwa, A. and Clough, R.W. (1982), "Buckling of cylindrical liquid storage tanks under earthquake loading", J. Earthq. Eng. Struct. Dyn., 10, 107-122. https://doi.org/10.1002/eqe.4290100108
- NZSEE (1986), Seismic Design of Storage Tanks: Recommendations of a Study Group of the New Zealand National Society for Earthquake Engineering (NZSEE) (M. J. N. Priestly, ed.), New Zealand National Society for Earthquake Engineering, Wellington, New Zealand.
- Ormeno, M., Geddes, M., Larkin, T. and Chouw, N. (2015), "Experimental study of slip-friction connectors for controlling the maximum seismic demand on a liquid storage tank", Eng. Struct., 103, 134-146. https://doi.org/10.1016/j.engstruct.2015.09.005
- Ormeno, M., Larkin, T. and Chouw, N. (2015), "The effect of seismic uplift on the shell stresses of liquid-storage tanks", Earthq. Eng. Struct. D, 44(12), 1979-1996. https://doi.org/10.1002/eqe.2568
- Ozdemir, Z., Souli, M. and Fahjan, Y.M. (2010), "Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks", Eng. Struct., 32(2), 409-423. https://doi.org/10.1016/j.engstruct.2009.10.004
- Ozdemir, Z., Souli, M. and Fahjan, Y.M. (2012), "Numerical evaluation of nonlinear response of broad cylindrical steel tanks under multidimensional earthquake motion", Earthq. Spectr., 28(1), 217-238. https://doi.org/10.1193/1.3672996
- Panchal, V.R. and Jangid, R.S. (2008), "Variable friction pendulum system for seismic isolation of liquid storage tanks", Nucl. Eng. Des., 238(6), 1304-1315. https://doi.org/10.1016/j.nucengdes.2007.10.011
- Panigrahy, P.K., Saha, U.K. and Maity, D. (2009), "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", Ocean Eng., 36(3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
- Pena Ruiz, D. and Guzman Gutierrez, S. (2015), "Finite element methodology for the evaluation of soil damping in LNG tanks supported on homogeneous elastic halfspace", B Earthq. Eng., 13(3), 755-775. https://doi.org/10.1007/s10518-014-9655-4
- Razzaghi, M.S. and Eshghi, S. (2015), "Probabilistic seismic safety evaluation of precode cylindrical oil tanks", J. Perform. Constr. Fac., 29(6).
- Ruiz, R.O., Lopez-Garcia, D. and Taflanidis, A.A. (2015), "An efficient computational procedure for the dynamic analysis of liquid storage tanks", Eng. Struct., 85, 206-218. https://doi.org/10.1016/j.engstruct.2014.12.011
- Saghi, H. (2016), "The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon", J. Nav. Arch. Ocean, 8(2), 153-168. https://doi.org/10.1016/j.ijnaoe.2015.12.001
- Saghi, H. and Ketabdari, M.J. (2012), "Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM", J. Mar. Sci. Appl., 11(4), 417-426. https://doi.org/10.1007/s11804-012-1151-0
- Saha, S.K., Matsagar, V. and Chakraborty, S. (2016), "Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models", Probabl. Eng. Mech., 43, 20-35. https://doi.org/10.1016/j.probengmech.2015.10.008
- Saha, S.K., Matsagar, V.A. and Jain, A.K. (2016), "Seismic fragility of base-isolated water storage tanks under nonstationary earthquakes", B Earthq. Eng., 14, 1153-1175. https://doi.org/10.1007/s10518-016-9874-y
- Sanapala, V.S., Velusamy, K. and Patnaik, B.S.V. (2016), "CFD simulations on the dynamics of liquid sloshing and its control in a storage tank for spent fuel applications", Ann Nucl. Energy, 94, 494-509. https://doi.org/10.1016/j.anucene.2016.04.018
- Seleemah, A.A. and El-Sharkawy, M. (2011), "Seismic response of base isolated liquid storage ground tanks", Ain Shams Eng. J., 2(1), 33-42. https://doi.org/10.1016/j.asej.2011.05.001
- Sezen, H. and Whittaker, A.S. (2006), "Seismic performance of industrial facilities affected by the 1999 Turkey earthquake", J. Perform. Constr. Fac., 20(1), 28-36. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(28)
- Sezen, H., Livaoglu, R. and Dogangun, A. (2008), "Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks", Eng. Struct., 30(3), 794-803. https://doi.org/10.1016/j.engstruct.2007.05.002
- Shrimali, M.K. and Jangid, R.S. (2004), "Seismic analysis of baseisolated liquid storage tanks", J. Sound Vibr., 275(1-2), 59-75. https://doi.org/10.1016/S0022-460X(03)00749-1
- Soedel, W. (1981), Vibrations of Shells and Plates, 2nd Edition, Marcel Dekker Inc, New York, U.S.A.
- Soni, D.P., Mistry, B.B. and Panchal, V.R. (2011), "Double variable frequency pendulum isolator for seismic isolation of liquid storage tanks", Nucl. Eng. Des., 241(3), 700-713. https://doi.org/10.1016/j.nucengdes.2011.01.012
- Taniguchi, T. (2004), "Rocking behavior of unanchored flatbottom cylindrical shell tanks under action of horizontal base excitation", Eng. Struct., 26(4), 415-426. https://doi.org/10.1016/j.engstruct.2003.10.013
- Tazuke, H., Yamaguchi, S., Ishida, K., Sakurai, T. and Akiyama, H. (2002), "Seismic proving test of equipment and structures in thermal conventional power plant", J. Press. Vess. Technol., 124(2), 133-143. https://doi.org/10.1115/1.1460905
- Vathi, M. and Karamanos, S.A. (2015), "Simplified model for the seismic performance of unanchored liquid storage tanks", Proceedings of the ASME 2015 Pressure Vessels and Piping Conference.
- Veletsos, A.S. (1974), "Seismic effects in flexible liquid storage tanks", Proceedings of the 5th World Conference on Earthquake Engineering, Rome, Italy.
- Virella, J.C., Godoy, L.A. and Suarez, L.E. (2006), "Fundamental modes of tank-liquid systems under horizontal motions", Eng. Struct., 28(10), 1450-1461. https://doi.org/10.1016/j.engstruct.2005.12.016
- Virella, J.C., Prato, C.A. and Godoy, L.A. (2008), "Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions", J. Sound Vibr., 312(3), 442-460. https://doi.org/10.1016/j.jsv.2007.07.088
- Wang, Y., Teng, M. and Chung, K. (2001), "Seismic isolation of rigid cylindrical tanks using friction pendulum bearings", Earthq. Eng. Struct. D, 30(7), 1083-1099. https://doi.org/10.1002/eqe.56
- Wolf, J.P. and Deeks, A.J. (2004), Foundation Vibration Analysis: A Strength of Materials Approach, Elsevier, Oxford, U.K.
- Wunderlich, W. and Seiler, C. (2000), "Nonlinear treatment of liquid-filled storage tanks under earthquake excitation by a quasistatic approach", Comput. Struct., 78, 385-395. https://doi.org/10.1016/S0045-7949(00)00085-7
- Xue, M. and Lin, P. (2011), "Numerical study of ring baffle effects on reducing violent liquid sloshing", Comput. Flu., 52, 116-129. https://doi.org/10.1016/j.compfluid.2011.09.006
- Yue, B. and Wang, Z. (2006), "Numerical study of threedimensional free surface dynamics", Acta Mech. Sin.-Prc., 22(2), 120-125. https://doi.org/10.1007/s10409-006-0100-z
- Zhou, D. and Liu, W. (2007), "Hydroelastic vibrations of flexible rectangular tanks partially filled with liquid", J. Numer. Meth. Eng., 71(2), 149-174. https://doi.org/10.1002/nme.1921
피인용 문헌
- Nonlinear response of acid storage tank coupled with piping attachment under seismic load for optimal safe design vol.18, pp.1, 2021, https://doi.org/10.1590/1679-78256301
- Shaking table test of liquid storage tank with finite element analysis considering uplift effect vol.77, pp.3, 2018, https://doi.org/10.12989/sem.2021.77.3.369