References
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48, 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vibr., 310(4), 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
- Amiri, J.V., Nikkhoo, A., Davoodi, M.R. and Hassanabadi, M.E. (2013), "Vibration analysis of a mindlin elastic plate under a moving mass excitation by eigenfunction expansion method", Thin-Wall. Struct., 62, 53-64. https://doi.org/10.1016/j.tws.2012.07.014
- Bedroud, M., Nazemnezhad, R., Hosseini-Hashemi, S. and Valixani, M. (2016), "Buckling of FG circular/annular mindlin nanoplates with an internal ring support using nonlocal elasticity", Appl. Math. Modell., 40, 3185-3210. https://doi.org/10.1016/j.apm.2015.09.003
- Bracewell, R. (1986), The Fourier Transform and Its Applications, McGraw-Hill, New York, U.S.A.
- Cho, D.S., Kim, B.H., Kim, J.H. and Choi, T.M. (2015), "Frequency response of rectangular plate structures in contact with fluid subjected to harmonic point excitation force", Thin-Wall. Struct., 95, 276-286. https://doi.org/10.1016/j.tws.2015.07.013
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. (2008), "Discrete singular convolution method and applications to free vibration analysis of circular and annular plates", Struct. Eng. Mech., 29, 237-240. https://doi.org/10.12989/sem.2008.29.2.237
- Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular kirchhoff plates subjected to compressive loads on two-opposite edges", Adv. Eng. Softw., 41, 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Dong, C.Y. (2008), "Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-ritz method", Mater. Des., 29(8), 1518-1525. https://doi.org/10.1016/j.matdes.2008.03.001
- Fox, L. and Parker, I.B. (1968), Chebyshev Polynomials in Numerical Analysis, Oxford University Press, Oxford, U.K.
- Haddara, M.R. and Cao, S. (1996), "A study of the dynamic response of submerged rectangular flat plates", Mar. Struct., 9(10), 913-933. https://doi.org/10.1016/0951-8339(96)00006-8
- Hashemi, S.H., Karimi, M. and Taher, H.R.D. (2010), "Vibration analysis of rectangular mindlin plates on elastic foundations and vertically in contact with stationary fluid by the ritz method", Ocean Eng., 37(2), 174-185. https://doi.org/10.1016/j.oceaneng.2009.12.001
- Hasheminejad, S.M., Khaani, H.A. and Shakeri, R. (2013), "Free vibration and dynamic response of a fluid-coupled double elliptical plate system using mathieu functions", J. Mech. Sci., 75, 66-79. https://doi.org/10.1016/j.ijmecsci.2013.05.012
- Hejripour, F. and Saidi, A.R. (2012), "Nonlinear free vibration analysis of annular sector plates using differential quadrature method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226(2), 485-497. https://doi.org/10.1177/0954406211414517
- Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Modell., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008
- Jafari, A.A., Khalili, S.M.R. and Azarafza, R. (2005), "Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads", Thin-Wall. Struct., 43(11), 1763-1786. https://doi.org/10.1016/j.tws.2005.06.009
- Jeong, K.H. (2003), "Free vibration of two identical circular plates coupled with bounded fluid", J. Sound Vibr., 260(4), 653-670. https://doi.org/10.1016/S0022-460X(02)01012-X
- Jeong, K.H., Lee, G.M. and Kim, T.W. (2009), "Free vibration analysis of a circular plate partially in contact with a liquid", J. Sound Vibr., 324(1), 194-208. https://doi.org/10.1016/j.jsv.2009.01.061
- Jhung, M.J., Choi, Y.H. and Kim, H.J. (2005), "Natural vibration characteristics of a clamped circular plate in contact with fluid", Struct. Eng. Mech., 21, 169-184. https://doi.org/10.12989/sem.2005.21.2.169
- Jomehzadeh, E., Saidi, A.R. and Atashipour, S.R. (2009), "An analytical approach for stress analysis of functionally graded annular sector plates", Mater. Des., 30(9), 3679-3685. https://doi.org/10.1016/j.matdes.2009.02.011
- Kerboua, Y., Lakis, A.A., Thomas, M. and Marcouiller, L. (2008), "Vibration analysis of rectangular plates coupled with fluid", Appl. Math. Modell., 32(12), 2570-2586. https://doi.org/10.1016/j.apm.2007.09.004
- Khdeir, A.A. and Reddy, J.N. (1988), "Dynamic response of antisymmetric angle-ply laminated plates subjected to arbitrary loading", J. Sound Vibr., 126(3), 437-445. https://doi.org/10.1016/0022-460X(88)90222-2
- Khorshidi, K. and Bakhsheshy, A. (2014), "Free natural frequency analysis of an FG composite rectangular plate coupled with fluid using rayleigh-ritz method", Mech. Adv. Compos. Struct., 1(2), 131-143.
- Kwak, M.K. (1997), "Hydroelastic vibration of circular plates", J. Sound Vibr., 201(3), 293-303. https://doi.org/10.1006/jsvi.1996.0775
- Kwak, M.K. and Kim, K.C. (1991), "Axisymmetric vibration of circular plates in contact with fluid", J. Sound Vibr., 146(3), 381-389. https://doi.org/10.1016/0022-460X(91)90696-H
- Levy, R. (1996), "Rayleigh-ritz optimal design of orthotropic plates for buckling", Struct. Eng. Mech., 4, 541-552. https://doi.org/10.12989/sem.1996.4.5.541
- Mehrabadi, S.J., Kargarnovin, M.H. and Najafizadeh, M.M. (2009), "Free vibration analysis of functionally graded coupled circular plate with piezoelectric layers", J. Mech. Sci. Technol., 23(8), 2008-2021. https://doi.org/10.1007/s12206-009-0519-9
- Myung, J.J. and Young, H.C. (2003), "Fluid bounding effect on natural frequencies of fluid-coupled circular plates", KSME Int. J., 17(9), 1297-1315. https://doi.org/10.1007/BF02982471
- Shafiee, A.A., Daneshmand, F., Askari, E. and Mahzoon, M. (2014), "Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid", Struct. Eng. Mech., 50(1), 53-71. https://doi.org/10.12989/sem.2014.50.1.053
- Shen, H.S. (2016), Functionally Graded Materials. Nonlinear Analysis of Plates and Shells, CRC Press.
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52, 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tariverdilo, S., Shahmardani, M., Mirzapour, J. and Shabani, R. (2013) "Asymmetric free vibration of circular plate in contact with incompressible fluid", Appl. Math. Modell., 37(1), 228-239. https://doi.org/10.1016/j.apm.2012.02.025
- Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Threedimensional vibration analysis of circular and annular plates via the chebyshev-ritz method", J. Sol. Struct., 40(12), 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8
Cited by
- Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141