DOI QR코드

DOI QR Code

Tactics Generation about Anti-submarine using Genetic Algorithm through Oceanography Environmental Change

해양 환경 변화에 따른 유전 알고리즘 기반의 대잠전 전술 생성에 관한 연구

  • Received : 2017.12.07
  • Accepted : 2018.01.31
  • Published : 2018.02.28

Abstract

Making proper judgements in urgent situations facing a submarine at the sea is very critical. This is because the commander's misjudgments could drive the entire ally to destruction in a moment. In order to generate appropriate tactics on behalf of the human commander and to analyze the effectiveness in such emergency situations, studies using intelligent agents and genetic algorithms have been conducted. In this study, inference engine based intelligent agent is adopted to each warship and submarine to generate optimal tactics on the variable environment with genetic algorithms. And we analyze the risk of the alliance according to the performance of the enemy submarine through a simple simulation and generate appropriate tactics using the genetic algorithm. Also generated tactics are evaluated and the results are analyzed to figure out why such results are formed.

해상에서 잠수함을 마주하는 급박한 상황에서 올바르게 상황을 판단하는 것은 매우 중요하다. 지휘관의 잘못된 판단으로 한순간에 아군을 전멸로 몰고 갈 수 있기 때문이다. 이러한 위급한 상황에서 인간 지휘관을 대신하여 적합한 전술을 생성하고 효과도를 분석하기 위하여 기존에 지능 에이전트와 유전 알고리즘을 사용한 연구가 진행된 바 있다. 본 연구에서는 각 함정 및 잠수함에 추론엔진 기반의 에이전트를 적용하고, 각 에이전트에 유전 알고리즘 기반의 규칙을 적용하여 변화하는 상황에 적응하여 최적의 전술이 도출될 수 있도록 하였다. 그리고 간단한 시뮬레이션을 통해서 적 잠수함의 성능에 따른 아군의 위험도를 분석해보고 그에 따른 적합한 전술을 유전알고리즘을 사용하여 생성하였다. 또한 생성된 전술들에 대해서 평가해 보고 왜 그런 결과가 나오게 되었는지 분석하였다.

Keywords

References

  1. S. H. Shin, K. M. Park, E. B. Lee, S. D. Chi, and S. J. Han, "Agent-based SAF Modeling Tool for DEVS M&S", Journal of the Korea Society for Simulation, vol. 22, no. 4, pp. 49-55, Dec. 2013. https://doi.org/10.9709/JKSS.2013.22.4.049
  2. C. H. Jung, H. E. Ryu, Y. J. You and S. D. Chi,. "Many-to-Many Warship Combat Tactics Generation Methodology Using the Evolutionary Simulation", Journal of the Korea Society for Simulation, vol. 20, no. 3, pp. 79-88, Sep. 2011. https://doi.org/10.9709/JKSS.2011.20.3.079
  3. Y. J. You, S. D. Chi and J. I. Kim, "Simulation-Based Tactics Generation for Warship Combat Using the Genetic Algorithm", IEICE TRANSACTIONS on Information and Systems, vol. 94, no. 12, pp. 2533-2536, Dec. 2011.
  4. K. M. Park, E. B. Lee, S. H. Shin and S. D. Chi, "Modeling and Simulation for Anti-submarine HVU Escort Mission", Journal of the Korea Society for Simulation, vol. 23, no. 4, pp. 75-83, Dec. 2014. https://doi.org/10.9709/JKSS.2014.23.4.075
  5. K. M. Park, S. H. Shin, and S. D. Chi. "The Genetic Algorithm using Variable Chromosome with Chromosome Attachment for decision making model", Journal of the Korea Society for Simulation, vol. 26, no. 4, pp. 1-9, Sep. 2017. https://doi.org/10.9709/JKSS.2017.26.1.001
  6. D. Y. Cho, M. J. Son, G. Y. Lee, T. W. Kim, J. G. Park, "A Study on the Tactic Manager for the Modeling & Simulation of the Underwater Vehicles." Korea CAD/CAM Society Conference, pp. 392-400, 2007.
  7. B. P. Zeigler, "Object-oriented simulation with hierarchical, modular models: intelligent agents and endomorphic systems.", San Diego, Academic press, 2014.
  8. B. K. Choi and D. H. Kang, "Modeling and simulation of discrete event systems", New Jersey, John Wiley & Sons, 2013.
  9. S. Ha, N Ku, K. Y. Lee and M. I. Roh, "Development of battle space model based on combined discrete event and discrete time simulation model architecture for underwater warfare simulation.", Journal of the Korea Society for Simulation, vol. 22, no. 2, pp. 11-19, Jun. 2013. https://doi.org/10.9709/JKSS.2013.22.2.011
  10. H. G. Hwang, H. K. Kim, and J. S. Lee, "An agent based modeling and simulation for survivability analysis of combat syste.", Journal of the Korea Institute of Information and Communication Engineering, vol. 16, no. 12, pp. 2581-2588, Sep. 2012. https://doi.org/10.6109/jkiice.2012.16.12.2581
  11. D. E. Golberg, "Genetic algorithms in search, optimization, and machine learning", New York, Addison-Wesley , 1989.